

Project acronym: OVERSEE

Project title: Open Vehicular Secure Platform

Project ID: 248333

Call ID: FP7-ICT-2009-4

Programme: 7th Framework Programme for Research and Technological Development

Objective: ICT-2009.6.1: ICT for Safety and Energy Efficiency in Mobility

Contract type: Collaborative project

Duration: 01-01-2010 to 30-06-2012 (30 months)

Deliverable D2.5:

Definition of the Requirements for Validation of
OVERSEE Implementations

Authors: Cyril Grepet (Trialog)

Alfons Crespo (UPV)
Nicholas McGuire (OpenTech)
Thomas Enderle (Escrypt)

Reviewers: Alfons Crespo (UPV)
Nicholas McGuire (OpenTech)
Jan Holle (UniSi)
André Groll (Unisi)

Dissemination level: Public

Deliverable type: Report

Version: 1.2

Submission date: 3rd June 2011

D2.5 Definition of the Requirements for Validation

ii

Abstract

This document contains an overview of the technical requirements to provide a validation of
the OVERSEE platform. In the context of the project it means to define a set of
methodologies, techniques and tools suitable to provide a sufficient validation of the various
part of the platform to be compliant to some standard in security (and safety) as well to
ensure that an implementation fits the OVERSEE platform specification. Each one can have
consequences on the design of the platform.

D2.5 Definition of the Requirements for Validation

iii

Contents

Abstract ... ii

Contents ... iii

List of Figures ... v

List of Tables ... vi

List of Acronyms and Abbreviations ... vii

Document History ... ix

1 Introduction ..1

1.1 Scope and Objectives of the Document ... 1

1.2 Document Outline .. 1

2 State of the art: Overview of Validation possibilities ..2

2.1 Conformance Testing ... 2

2.2 Common Criteria .. 2

2.3 Verification of properties by Proof and Model Checking .. 3

3 Conformance and Interoperability testing (Trialog) ..4

3.1 Introduction .. 4

3.1.1 Definitions .. 4

3.1.2 Conformance Validation Process ... 5

3.2 Conformance testing in OVERSEE .. 8

3.2.1 Goal of the Conformance Testing .. 8

3.2.2 High Level requirements for testability ... 8

4 Security Services Validation ... 10

4.1 General CC Process ... 10

4.2 Application to OVERSEE ... 11

4.2.1 Introduction ... 11

4.2.2 Evaluation Support ... 11

4.2.3 Development.. 12

5 Verification of Isolation Property ... 14

5.1 State of the art of the techniques .. 14

5.1.1 General introduction to the core problem .. 14

5.1.2 Formal specification of critical properties: .. 15

5.1.3 Tracking tools ... 17

D2.5 Definition of the Requirements for Validation

iv

5.2 Verification of Isolation Properties .. 20

5.3 Spatial isolation .. 21

5.4 Temporal isolation.. 22

5.5 Properties verification .. 22

6 Conclusion .. 24

7 References .. 25

A. Selection of Modules - Methodology Notes .. 26

A.1.1 Assess the complexity of the underlying mechanism and its adaptability 26

A.1.2 Assessment of impact of modifications ... 26

A.1.3 Assessment of available modules .. 27

Goals of LSM .. 27

Available LSM and very brief feature list: .. 28

A.1.4 QA – Quality Assurance .. 28

A.1.5 Technical documentation available ... 29

A.1.6 Maintainability ... 29

B. Conformance Testing: how implementation meets specifications? 30

B.1. Functional Safety related Standards .. 30

B.2. DO 178B Software Considerations in Airborne Systems ... 31

B.2.1 ARINC 653 ... 31

B.3. IEC 15408 Common Criteria ... 32

D2.5 Definition of the Requirements for Validation

v

List of Figures

Figure 1: Conformance testing process.. 6

Figure 2: Local Testing Architecture and Conformance Testing Process 7

D2.5 Definition of the Requirements for Validation

vi

List of Tables

Table 3-1 : High Level Requirements Table .. 9

D2.5 Definition of the Requirements for Validation

vii

List of Acronyms and Abbreviations

API Application Programming Interface

ATC Abstract Test Case

ATS Abstract Test Suite

BSI Bundesamt für Sicherheit in der Informationstechnik

CC Common Criteria

CPU Central Processing Unit

ETS Executable Test Suite

ETSI European Committee for Standardization

FLOSS Free/Libre Open Source Software

FSM Finite State Machine

HSM Hardware Security Module

I/O Input Output

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITS Intelligent Transportation System

IUT Implementation Under Test

LT Lower Tester

MAF Major Frame

MMU Memory Management Unit

MTS Methods for Testing and Specification

NSA Natinal Security Agency

OS Operating System

OVERSEE Open Vehicular Secure Platform

PCO Point of Control and Observation

PP Protection Profile

RCS Revision Control System

SAR security assurance requirements

SFR security functional requirements

SSPM Security Services Provider Module

ST Security Target

SUT System Under Test

D2.5 Definition of the Requirements for Validation

viii

TCP test coordination procedure

TOE Target Of Evaluation

TTCN Testing and Test Control Notation

UT Upper Tester

XML Extensible Markup Language

D2.5 Definition of the Requirements for Validation

ix

Document History

Version Date Changes

1.2 03-06-2011 Final version

D2.5 Definition of the Requirements for Validation

1

1 Introduction

The Open Vehicular Secure Platform (OVERSEE] project has produced this deliverable. It
contains contribution from TRIALOG, escrypt GmBh, UPValencia and OpenTech.

1.1 Scope and Objectives of the Document

The scope of this document is to describes a set of methodologies based on well-known
techniques and tools, to validate the different part of the OVERSEE platform.

There are a number of methodologies to validate a product depending on its scope. Formal,

semi-formal or practical conformance testing for communicating systems and verification by
proof or model-checking for critical systems are examples of this diversity.

In this document is presented some methodologies suited to validate the OVERSEE platform
in its communication, security and isolation aspects.

1.2 Document Outline

The section 2 is a short overview of the state of the art in the three methodologies that will
be used in the following of the project.

The section 3 presents how to validate the communicating part of the system by
conformance validation. The section 4 presents the application of Common Criteria to a

specific subset of security objectives. Finally, a verification using Model-Checking of the
isolation aspect of the OVERSEE platform is described in section 5.

D2.5 Definition of the Requirements for Validation

2

2 State of the art: Overview of Validation possibilities

2.1 Conformance Testing

This section assesses the use of typical communicating system testing approaches based on
the ISO-9646 Standard and adapts it to the testing of certain aspects of the OVERSEE
platform. The ISO standard is used as the foundation of the ETSI ETS-300.406 Standard.

The purpose of conformance testing is to determine if system’s behaviour meets its
specification. The specification could be literal as in most of the standard or based on a
formal/semi-formal specification. The ISO-9646 standard defines the conformance testing

for the implementation of protocols and therefore all communicating systems that use
message-based communication. The conformance testing is one of the approaches to ensure
the conformance of an implementation with respect to its definition but also to ensure the
interoperability between multiple implementations.

One of the main benefits of this kind of validation is that it can be applied to an
implementation that code is not reachable. It is called Black Box testing by opposition to the
White Box testing where the code is available to the test.

Conformance testing should be used to validate both communication protocols and
interfaces. Section 3 provides more information and describes the possible uses of
Conformance Testing within the OVERSEE project.

2.2 Common Criteria

The Common Criteria (CC) is a collection of rules to formalize security evaluations. They were
written in a joint effort by the government agencies responsible for IT security in various

countries (e.g., NSA for the US, BSI for Germany etc.) These parties have a mutual agreement
to recognize CC evaluation results.

The CC first defines a model and a language in which security problems and solutions are
described, and subsequently specifies a process how to evaluate a product depending on the
required security level. Not only the implementation is evaluated, but also associated issues
like development, testing, distribution etc. The evaluation procedure is very formal and
modular which ensures the applicability of the method to a wide range of IT security

problems while retaining comparability of security properties and evaluation results.

The following roles are defined: the developer, the evaluator, the sponsor and the authority
(commonly one of said government agencies). The role “customer” is indirectly involved. The
sponsor arranges an evaluation of a product created by the developer to convince the
customer that the product is secure to a certain degree. To this end the sponsor employs an
evaluator, who is accredited by the authority and is trusted by the customer.

The end result is a widely recognized document which assures certain security properties of
the product.

D2.5 Definition of the Requirements for Validation

3

2.3 Verification of properties by Proof and Model Checking

Over the last years, formal methods have become more and more important
to assure the quality of software, and to complement traditional testing
methods. The main problem of traditional testing methods is, that even for
relatively simple applications, they can never be exhaustive, so formal methods are getting a
more and more important part of quality assurance processes.

The detailed evaluation of what methods can be smoothly integrated into the actual
development process for OVERSEE, respectively which would be integrated in the form of
proof-of-concept is still open as development has not yet fully started.
Formal methods are seen as one strong catalogue of methods that can help resolve some of

the open issues related to reusing existing components while operating in an environment
that has not only security but also some limited safety and obvious availability demands.
Based on the practical evaluation of existing tools a set will be proposed for integration into
the OVERSEE build-environment

D2.5 Definition of the Requirements for Validation

4

3 Conformance and Interoperability testing (Trialog)

3.1 Introduction

As stated in section 2.1 testing methodology is based on international standards. This work
relies on the following ones:

 ETS 300 406: Methods for Testing and Specification (MTS) - Protocol and Profile
Conformance Testing Specifications - Standardization Methodology [1] .

 ETR 266: Methods for Testing Specification (MTS) – Test Purpose Style Guide [2].

 ISO/IEC 9646-x Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework [3].

The ETR 266 is not a standard but rather an informative document nevertheless it is still
useful.

3.1.1 Definitions

Some definitions come with the standard.

 ATC: Abstract Test Case – A realisation of a test purpose. It is a complete

specification of all the actions required to achieve this test purpose. It is written in a
programming language specific to testing, e.g., TTCN. In general, each test case starts

in a stable testing state and ends in a stable testing state

 ATS: Abstract Test Suite – An abstract test suit is a collection of test cases that are
used to test the Implementation Under Test to show that it correctly executes the
specified set of behaviours. A test suite can include detailed instructions or goals for

each collection of test cases as well as information on the system configuration to be
used during testing. A test or group of tests may also contain prerequisite states or
steps, and descriptions of resulting states or steps.

 ETS: Executable Test Suite – This test suite can be executed by a program that can

communicate with the System Under Test. Usually the ETS is automatically generated
from the ATS.

 IUT: Implementation Under Test – This is the particular portion of the System Under
Test which is to be tested, e.g., the communication functions of a mobile phone but
not the sound or screen functions. The IUT is viewed as a black box by the test
system is compared to its specification

 LT/UT: Lower Tester / Upper Tester – TTCN was first specified for protocol testing in
the telecommunication domain. Therefore LT and UT refer to the layers of the
protocol stack. Lower Tester: the test component of the test engine that
communicates with the IUT via the Points of Control and Observation at the lower
layer. Upper Tester: the test component of the test engine that communicates with
the IUT via the Points of Control and Observation at the upper layer

D2.5 Definition of the Requirements for Validation

5

 PCO: Point of Control and Observation – Communication between the test engine

and the IUT is achieved via points of control and observation. PCOs are the only
means that allow the test system to interact with the IUT. At least one PCO is
needed in a testing architecture.

 SUT: System Under Test – defines the boundaries for the system that is being tested

for correct operation, including the hardware and software, e.g., the complete
hardware and software of a mobile telephone is the SUT when the IUT is the
communication functions of the phone. Basically the system that contains the IUT.
The IUT and the SUT can be the same in many cases . Sometime the
interfaces of the IUT are not directly available therefore the IUT is imbricate in the
SUT

 Test Case: A set of conditions or variables under which a test will determine whether

an application or software system is working correctly or not.

 Test Purpose: A prose description of a well-defined objective of testing, focusing on a
single conformance requirement. It represents an abstract description of the test to
be performed independently of any concrete realization.

 Test Report: the result of each test generated by the Test System to provide data to

evaluate the IUT’s conformance to the requirements

 Test System (or Test Engine): includes the dedicated test system and the tests that it
executes. It has full control over the SUT while stimulating it with relevant events and
checking its resulting behaviour.

 Testing and Test Control Notation (TTCN) [4]: a programming language standardised

by ISO for the specification of tests for real-time and communicating systems,
developed within the framework of standardised conformance testing (ISO/IEC 9646
[3]). A TTCN test suite consists of multiple test cases written in the TTCN
programming language. Dedicated compilers or interpreters are required for
execution.

3.1.2 Conformance Validation Process

The process usually used to validate a protocol or a communicating system is usually the one
described in Figure 1.

D2.5 Definition of the Requirements for Validation

6

Figure 1: Conformance testing process

The steps are the following:

 According to the SUT and the available PCO a testing architecture is define enabling

the test campaign. A test architecture is usually compose of some Testers connected

to the PCO of the SUT that are able to communicate with the IUT

 From the specification some test purposes are extracted. The test purposes can have
different objectives: to capture the technical description of the specification (e.g.,
the required functionalities), to test the boundary conditions and divergence of the
specification (e.g. if a parameter can take two value ranges that lead to different
behaviour problems usually occur at the boundaries), to test internal structure not
accessible (e.g. the correct filling of a routing table). Depending on the format of the
specification it can be manually (if it is a textual one) or automatically (in case of
formal specification)

 The test purposes serve to define various test scenarios in a dedicated format

(usually the standard TTCN-3). Each test scenario describes a succession of actions

that verify if the IUT react correctly to a precise sequence that fulfil one goal (i.e. test
purpose). The whole test scenarios are the Abstract Test Suite (ATS). An ATS is usually
readable and understandable.

 From the Abstract Test Suite an Executable Test Suite (ETS) is generated. It is the
translation of each test scenario from the TTCN-3 format to an executable code that
will stimulate the real IUT through the Testers.

 The test campaign consists in executing the ETS through the tester and to collect all
the output from the IUT. If each input lead to an expected output then the verdict
“Pass” is provided. That means that no error has been exhibited (and not that the
implementation is without fault). If some output are not excepted the verdict is

D2.5 Definition of the Requirements for Validation

7

therefore “Fail”. From the error detected, the implementation must be corrected and

a new test campaign will be played later.

With quite the same process interoperability testing could be performed between more than
one implementation.

Testing architectures are also defined in [1] [3]. The testing architecture is usually composed
for protocol testing of:

 An Upper Tester (UT) linked to a PCO between the IUT and the upper layers of the
system.

 A Lower Tester (LT) linked to a PCO between the IUT and the lower layers of the

system.

 A Test Engine to coordinate both testers and to evaluate the conformity of the test
sequences. The coordination is usually unsure by a test coordination procedure
(TCP)

A representation of a local architecture (as define in [3]) within the conformance testing
process is depicted in Figure 2

Figure 2: Local Testing Architecture and Conformance Testing Process

Interoperability is usually defined as following: Interoperability testing is the activity of
proving that end-to-end functionality between (at least) two communicating systems is as
required by those systems' base standards. EG 202 237 describes a generic approach to
interoperability testing.

The interoperability testing relies on the same concept and phases even if their name can be
slightly different.

http://portal.etsi.org/mbs/Referenced%20Documents/eg_202_237.pdf

D2.5 Definition of the Requirements for Validation

8

3.2 Conformance testing in OVERSEE

3.2.1 Goal of the Conformance Testing

As the OVERSEE platform will support various communication protocols as well as multiple
applications (mostly dedicated to enforces security and dependability in the system) it will
be necessary to use the conformance testing

 Conformance of protocol implementations: In order to ensure separation of

concerns, there could be different test systems focusing on systems under test (SUT),
i.e. different layers.

 Conformance of interfaces: In order to ensure separation of concerns, there could be

different test systems focusing on different interfaces.

Even if the two goals are different the techniques are the same. As the design of the
OVERSEE platform, the involved communication, the security services and most of the
components are designed in the same time as this deliverable (see deliverables D2.1, D2.2,

D2.3 and D2.4) it is not possible to drawn a precise picture of the testing architecture or the
position of the PCOs. These concerns will be addressed in the coming WP4: Open Platform
Validation Support.

Within the OVERSEE project many protocols) are considered. Some of them are not yet well-
known as the ITS 5.9 GHz-based one. It will be necessary during the project, and for any
development of such a platform to ensure the conformity of the implementation of the
protocol (if it is not an already existing one) and the interoperability between the protocol

itself and the interfaces of the platform.

In a wider scope, any application running on top of the hypervisor layer is to be tested as
interoperable with the platform itself. For instance, if a security service is implemented in
the Security Services Partition, it has to be tested as:

1. Conform to its specification

2. Interoperable with the platform

Limitation of the real implementation: A complete conformance and interoperability testing
rely on a detailed and non-ambiguous specification of the system. Since OVERSEE aims to
prove only the suitability and the feasibility of its approach to a real implementation, a
complete conformance and interoperability testing seems not possible to perform along the
project. Nevertheless, it is still possible to conduct a series of tests based on non-formal

specific purposes to cope with the conformity and the interoperability of the various
protocols and interfaces.

3.2.2 High Level requirements for testability

From the purpose of the Conformance testing as a validation methodology for the OVERSEE
platform some technical requirements can be easily derived.

In the Table 3-1 high level requirements are described by a categorization on their goal.

D2.5 Definition of the Requirements for Validation

9

Req Global Requirements SubReq Requirement

1
Monitoring of the
communication interface by
the Test Tool

1.1
Platform provides Points of Control and
Observation (PCOs) on each communication
interface

1.2
The test tool must be able to plug on all the
interfaces provided by the platform

2
Observability of the interfaces
between the building blocks
by the test tool

2.1
Each building block must be reachable i.e.
“communication interface” even if
communication is not really the good term

2.3
The test tool must be as fast as the building
block (to avoid message congestion

reaching the test tools)

2.4
The test tool must support the protocol used
by the platform

2.5

The test tool must support and be coherent
with the cryptographic, signature and keys
used by the platform (can be divided in
various requirements)

3
Reset ability of the system to
the “initial state”

Each building block must allow one to drive
them in a known state, permitting therefore
the test

4

Testability of non functional
requirements (Observability
of resources consumption by
the test tool)

The platform must provide an access to
each resource to be tested.

5
Well-defined of API and Data
of building blocks

Each building block must specify clearly its
API and the data exchanged (I/O)

6 Responsivity of command

Each building block must be able to provide
a sort of acknowledgment that each
command received has been performed
(i.e. always an Output for an Input)

Table 3-1 : High Level Requirements Table

Security aspect:

It is necessary to highlight that these requirements imply that only an authorized actor can
be able to perform the test for security reasons.

For instance the requirement 1.1 could be described as: Each communication interface in
the OVERSEE platform have to be reachable for an external and authorized user to allow
verification and validation. It means that some PCOs must been reachable for an authorized
tester. This requirement will allow one to perform a wide range of functional validation. If
anyone can use the PCO it could have a great negative impact on the system.

D2.5 Definition of the Requirements for Validation

10

4 Security Services Validation

4.1 General CC Process

The product or system that is the subject of the evaluation is called TOE (Target of
Evaluation) [5].

In a first step the developer prepares a ST (Security Target) about the TOE. This is a
document consisting of:

 introduction

 conformance claim

 security problem definition

 security objectives

 extended components definition

 security requirements

 TOE summary specification

The security requirements in turn are composed of

 SFR (security functional requirements)

SFRs are formalized specifications of the security functions, consisting of predefined
functions [6] and additional parts defined by the developer in the section “extended
components definition”

The developer models the security functions of the TOE in terms of these defined
SFRs.

 SAR (security assurance requirements)

SAR’s specify how the TOE should be developed, implemented and evaluated. SAR’s

are divided into the following classes:
o Development

o Documentation

o Life Cycle Support

o Security Target Evaluation

o Tests

o Vulnerability Assessment

Every SAR specifies the actions to be done in the evaluation process by the developer
on the one hand and by the evaluator on the other hand, and as well the documents
to be produced.

All possible SARs are pre-specified in [7]. Many of them are available in different
hierarchical graded variants. Based on the desired assurance level an adapted subset

is selected for an ST.

An Evaluator then carries through the actions described in the SARs and assures that the
Developer has fulfilled all the requirements made there. This is described in [7], in [8] there
is a more detailed explanation of this process. The TOE has to fulfill every criterion for a

D2.5 Definition of the Requirements for Validation

11

successful evaluation (or a version thereof that was sanitized of proprietary information).In

the final stage an evaluation report together with the ST is published.

It is important to notice that the CC do not require certain security properties by itself. The
disadvantage of this approach is that a customer cannot rely blindly on a “certificate”, but
has to compare the ST to his requirements first. The advantage of this approach is that it is
very flexible and applicable to a wide range of IT products.

4.2 Application to OVERSEE

4.2.1 Introduction

Our implementation of OVERSEE will be a Proof-of-Concept. At a later point in time
production implementations will be created. The goal is to support developers of those
implementations with the evaluation of their product. Currently the evaluation approach in
the Common Criteria is not tailored to the automotive area. In WP4 we will therefore adapt
the Common Criteria approach and apply it to our design and proof of concept
implementation. Consequentially we will abbreviate steps that are too specific to our
implementation and as a result would not be helpful to the developers for the evaluation of
actual implementations.

TOE will be composed of:

 Security Services Partition

 Security Services Provider Module (SSPM)

 Hardware Security Module (HSM)

XtratuM itself as well as the HSM itself will be excluded from the evaluation, which means:

 The HSM is assumed to be secure.

 The communication between the Security Partition and the HSM is assumed to be

secure and unreachable by an attacker.

 Communication between the SSPM and the Security Services Partition is assumed to

be secured by XtratuM, which means it cannot be attacked from other partitions that

are not involved.

 The isolation provided by XtratuM is assumed secure.

 As a result the only interfaces that are considered exposed to attacks are the

connection between a user partition and the Security Services Partition, and, to a

limited degree, the API of the SSPM.

4.2.2 Evaluation Support

We will now give an overview of the process and decide where we will support the
developer of a productive implementation.

D2.5 Definition of the Requirements for Validation

12

4.2.3 Development

Most of the requirements in this section are general enough to be useful to support

evaluation of actual implementations. They result mainly in an extensive documentation.

 Security architecture description (ADV_ARC)

Here the developer first has to ensure, that the security functions cannot be

bypassed, and that the TOE protects itself from tampering. Then he has to describe

the security architecture of the TOE.

 A functional specification of the security functions has to be given. (ADV_FSP)

 The Implementation representation (i.e. the source code) has to be provided

(ADV_IMP)

 The design has to be described. (ADV_TDS)

4.2.3.1 Guidance Documents

The CC requires a complete, detailed user guide for all kinds of persons using the external
interfaces of the TOE, including developers, administrators and normal users. We will only
have a rudimentary user interface for demonstration purpose, so there is no use in
extensively documenting the interface for users and administrators, but we will document
the API for developers.

Also the description of preparative procedures lies outside of our scope.

4.2.3.2 Life Cycle Support

Our implementation will be a prototype, so this section doesn’t apply. Nevertheless by using

sound development practices one already fulfills a larger part of the requirements in this

section, e.g., version control systems, build systems, bug tracking, coding standards etc…

4.2.3.3 Security Target Evaluation

In this part the exact requirements for the ST are given. As the ST is a document on a rather
high level, it should be applicable to most implementations of the security services in

OVERSEE with minor changes.
We will in general adhere to the most recent CC version, this is version 3.1.

This is also the place to include Protection Profiles (PP) that are to be fulfilled. A PP is

structurally similar to an ST, but it deals with abstract classes of TOE, instead with concrete

TOE. There are some predefined PP available on [TBD]. An ST author can then claim

conformance to (or “include”) as many of these PP as he like and then has to fulfill all of

them. This is a practical way to facilitate ST creation, but unfortunately there is no PP

available that is usable for our purpose.

The predefined SFR will likely not be sufficient in this automotive application, so we will have

to define some extensions.

D2.5 Definition of the Requirements for Validation

13

4.2.3.4 Tests

Here the security functions of the TOE are to be tested. This is a special case of testing,
because the focus is on security. An analysis of the coverage and the depth of the supplied
tests will also be done.

All material generated in this task should be directly reusable by developers of future
implementations of OVERSEE, as long as APIs are concerned.

4.2.3.5 Vulnerability Assessment

The evaluator has to conduct a vulnerability assessment, based on a predefined model of an
attacker. Unfortunately this process strongly depends on the actual implementation; hence

if at all we will only be able to give hints to where vulnerabilities may occur.

D2.5 Definition of the Requirements for Validation

14

5 Verification of Isolation Property

5.1 State of the art of the techniques

5.1.1 General introduction to the core problem

 Complex code has a very large state space, making exhaustive testing practically impossible.
Think of a trivial function to add two integers.

int add(int *a, int *b)

 The total input space of this function, for a 32 bit system, is the combinatorial size of the
inputs, which would be 2^32 * 2^32 - that is 18446744073709551616 possible inputs - the
reason why this can't be exhaustively tested is I guess evident.

 So all formal methods are targeting to reduce the state space to a reasonable size allowing
to cover as much as necessary to prove specific properties.

State space reduction - a brief summary:

 State space reduction can be done by a lot of technologies and many of the model checkers
have gained there suitability for large software systems only due to extensive research on
state space reduction methods and optimal state space traversal strategies (i.e. SPIN [9])
some very general methods:

 reduce state space based on heuristics:

o lint Ą based on heuristics

o sparse Ą known problem checker in specific context

 reduce state space to the part related to the bug !

o satabs Ą reduction by iterative refinement (CEGAR)

o stanse Ą reduction by "Finite State Machine(FSM) extraction"

 Many of the tools use a combination of strategies, as this is not relevant at this point we will
not go into further details of state space reduction methods.

 Aside from the state space problem we also have a serious problem with describing the

necessary properties in machine readable form - computers are not too good at
understanding language that is easy for humans to comprehend, thus a more formal
language is needed. One big show-stopper for formal specification and consequent
validation has been the very non-intuitive language constructs used to specify such systems.
This has changed to some degree in the past decade. In the following section we exemplify
these changes by showing concrete examples of some tools.

D2.5 Definition of the Requirements for Validation

15

5.1.2 Formal specification of critical properties:

The properties of critical calls can be specified in a language suitable for interpretation by
bounded model checkers (i.e. CBMC) - allowing to certify that a particular piece of code is
satisfying a set of claims that are automatically generated. This is achieved by symbolic
execution allowing to cover the complete relevant state-space of the described code. The
level of detail of claims can be from relatively simple context checking i.e.:
unsigned long __get_free_page(gfp_t gfp_mask)

{
 __CPROVER_HIDE:
 if (gfp_mask & __GFP_WAIT) {
 assert_context_process();
 }
}

typical availability problems, like deadlocks, that are hard (or impossible) to detect by
traditional testing due to the size of the state-space:
void spin_lock(spinlock_t * lock)

{
 __CPROVER_HIDE:

#ifdef DDV_ASSERT_SPINLOCK
 __CPROVER_atomic_begin();
 __CPROVER_assert(lock - >init, "Spinlock is not
initialized");
 __CPROVER_atomic_end();
#endif

 do

 {
 __CPROVER_atomic_begin();
 if(lock - >locked == 0)
 {
 lock - >locked = 1;
 __CPROVER_atomic_end();
 return;
 }
 __CPROVER_atomic_end();
 }
 while(1);
}

To assessing the correctness of dependant code, i.e. the initialization and the runtime usage
of specific address ranges:

Note that the request call not necessarily is in close proximity to the actual accessed code,
further code may well be misinterpreted by humans, i.e. traditional off-by-one array issues
or the like. With a simple recording - shown here for the request region call in the Linux
kernel and a subsequent test for the use of the proper port value in later calls (below) a set
of correctness properties can be derived automatically and then verified with the
aforementioned tool CBMC.

struct resource *request_region(unsigned long start, unsigned

long len, const char *name)
{

D2.5 Definition of the Requirements for Validation

16

 unsigned int i;

 struct resource *resource = (struct
resource*)malloc(sizeof(struct resource));

 ddv_ioport_request_start = start;
 ddv_ioport_request_len = len;

 return resource;
}

void outb_p(unsigned char byte, unsigned int port)
{
 __CPROVER_HIDE:
 ddv_correc t_port_use(port);
}

The essence of these seemingly simple examples is the automation, allowing to verify
semantic properties of complex code as a routine effort during development rather than
trying to test all possible combinatorials - an obviously impossible task for even the most
trivial function.

Frama-c/ACSL:

 Frama-c is a framework not in itself a tool. It contains a large number of tools to generate
basic analysis based on different plug-ins allowing to provide formal specification of simple
properties - i.e. locking correctness properties by providing formal specifications in ACSL

right in the code.
/*@
 requires \ valid(ghost_loctable + m);
 requires !ghost_loctable[m];
 ensures ghost_loctable[m];
 assigns ghost_loctable;
 */
void acquire_lock(int m) { ghost_loctable[m]++; }

/*@
 requires \ valid(ghost_loctable + m);
 requires ghost_loctable[m]==1;
 ensures !ghost_loctable[m];
 assigns ghost_loctable[..];
 */

void release_lock(int m) { ghost_loctable[m] -- ; }

or providing formal specifications of function prototypes allowing to include them as
specification files:
/*@ requires \ valid(p) && \ valid(q);
 ensures *p <= *q;
 ensures (*p == \ old(*p) && *q == \ old(*q)) ||
 (*p == \ old(*q) && *q == \ old(*p));
*/
void max_ptr(int* p, int*q);

one of the essential properties of formal specification close to the code level is that it allows
to provide complete contracts that map to the code and thus allow verifying very specific

D2.5 Definition of the Requirements for Validation

17

properties of the actual code. Any change to the code that might only have a side effect in a

corner case - and thus evades detectio n by testing is highly probable to be detected
provided the specification actually constitutes a complete contract.
#include <stdio.h>
int foo(int x) {
 while (x > 0) {
 /* @ breaks x % 11 == 0 && x == \ old (x);
 @ continues (x+1) % 11 != 0 && x % 7 == 0 && x ==
\ old (x) - 1;
 @ returns (\ result +2) % 11 != 0 && (\ result +1) % 7
!= 0
 @ && \ r e s u l t % 5 == 0 && \ result ==
\ old (x) - 2;
 @ ensures (x+3) % 11 != 0 && (x+2) % 7 != 0 && (x+1)
% 5 != 0

 @ && x == \ old (x) - 3;
 @ */
 {
 if (x % 11 == 0) break ;
 x-- ;
 if (x % 7 == 0) continue ;
 x++;
 if (x % 5 == 0) return x;
 x-- ;
 }
 }
 return x;
}

 practically this provides a form of development level diversity, that is the developer is

required to keep code and specification in sync thus making it quite unlikely that a undesired
and unintended behaviour would be on the one hand coded and on the other hand specified
formally - though of course this is not impossible.

 A further advantage of this form of formal specification is the close proximity of the

specification and the actual implementation, typically writing lengthy specifications just
results in the same being at best ignored in the worst case misinterpreted and the diversion
not detected due to the high effort necessary to actually detect such a semantic mismatch
(assuming that the compiler is taking care of the syntactic properties sufficiently well).

5.1.3 Tracking tools

 Tracking has a few dimensions in complex software, one issue is tracking the sources and
the changes, with hopefully meaningful commit messages. A further dimension is tracking
movement of code and correlation of code/bugs in a dynamic code base. These properties
are not satisfied by most content management system - including the currently in mis-used
subversion repository (an aggregation of primarily meaningless commit messages is
testimony to how little utility a pure content management system actually is). Proper tools,
notably those that have proven the test of time in large software projects like the Linux
kernel are:

D2.5 Definition of the Requirements for Validation

18

5.1.3.1 Source tracking with GIT

Probably THE revision control and source tracking tool in the FLOSS world is GIT. Coming out
of the need for an open source distributed RCS system, GIT developed very fast, and is now
in use at almost all major FLOSS projects. Also repository hosting sites as e.g. github or
gitorious reflect the popularity of GIT. The most noticeable advantage of GIT is it's
distributed architecture, allowing all possible workflows. Furthermore, the "everything is
local" paradigm, not only allows the offline use of GIT, but also makes it very fast compared
to traditional centralized repositories (e.g., subversion), making speed a major advantage of
GIT.

Apart from that GIT offers lots of possibilities to maintain the traceability of source code.
These tools to trace the origin of the source code start at the commit level (git log), down to
every single line (git blame). Furthermore tags like signed-off-by or reviewed-by allow the

traceability of reviews at the patch level. One bit feature of GIT is the possibility of
integrating other tools of your development life cycle via GIT hooks. This could i.e. be used
to automatically check the coding style, run some formal tools like static code checkers on
every modified source file, ...

5.1.3.2 Context sensitive semantic tracking Herodotos

Detecting bugs is the first step, but bugs tend to move in the code, especially during
development, tracking bugs only at the level of the human context (i.e. files, directories)
does not do it - they will reappear in different locations, resulting in hours wasted manually
re-identifying the culprit. Automatic tracking in database tools is a first step, allowing to

determine regressions and maybe prioritize certain problems - there is a plethora of tools to
do this (bugzilla, ticket systems, etc)

The fundamental problem with these database focussed solutions though is that all tools
result not only in detection of bugs but also in a certain rate of false positives being

reported. These then can be cleared by manual inspection... which is obviously not a very
efficient way and also lacks effectiveness as we tend to become sloppy if we are ask to re-
inspect the same sequence over and over again - most notably in security related systems
this can be fatal. What is needed is a tracking system that can correlate moving false
positives to ensure that the one-time in-depth inspection is sufficient.

 Tracking the movement of bugs/tests etc. in dynamic code by correlation is the next step,
allowing to ensure focus on actual bugs rather than on manually context evaluation and

correlation. One tool that has proven to be suitable in a number of large projects, e.g., the
Linux kernel, the wine OS API, the openssl security library or the VLC media player, is
herodotos.

5.1.3.3 Change management

Humans are notoriously bad at repetitive and monotone work like updating APIs in a large
code base. This will happen, and the later in the development it happens the more likely it is
that in the overall complexity of the code base and the "last minute panic" subtle semantic
changes occur that raise security critical corener cases to the level of exploitable bugs.

D2.5 Definition of the Requirements for Validation

19

As described above the formal specification can help ensure that the code at the specific

location is in sync with the specification, but how to keep the API semantically (not just
syntactically!) in sync over a large code tree? Tools that allow these must not only
understand complex semantics of code, but also allow to detect isomorphic code constructs
and nested constructs. One such tool that has been in wide use in the Linux kernel is
coccinelle. This semantic patch tool allows specifying a semantic change and the contextual
specification and then automatically generate a patch that can then be applied to alarge
code based with the automatic tool spatch.

 As an example here is the update of a Linux kernel api:
// Copyright: (C) 2009 Gilles Muller, Julia Lawall, INRIA,
DIKU. GPLv2.

@has_sc1@

@@

#include <linux/serial_core. h>

@has_sc2@
@@

#include <linux/serial_8250.h>

@depends on has_sc1 || has_sc2@
@@

- SERIAL_IO_MEM
+ UPIO_MEM

 This seemingly trivial update of a macro is context sensitive, and this context can be suitably
described by coccinelle to allow patching the right sources that satisfy the respective
constraints. A further example is maybe a bit more intuitive showing an actual API change:

// Copyright: (C) 2009 Gilles Muller, Julia Lawall, INRIA,
DIKU. GPLv2.

@@
struct device dev;
exp ression E;
type T;
@@

- dev.driver_data = (T)E

+ dev_set_drvdata(&dev, E)

@@
struct device *dev;
expression E;
type T;
@@

- dev - >driver_data = (T)E
+ dev_set_drvdata(dev, E)

@@
struct device dev;

D2.5 Definition of the Requirements for Validation

20

type T;

@@

- (T)dev.driver_data
+ dev_get_drvdata(&dev)

@@
struct device *dev;
type T;
@@

- (T)dev - >driver_data
+ dev_get_drvdata(dev)

Thus all semantically legal case of the old call dev->driver_data are properly descried and
handled - thus ensuring that all instances of the old API are handled (call by value, call by
reference and casted versions)

It should be noted that this is not a lexical description but actually a semantical description,
thus this will match in all representations that are legal in the C language used in the Linux
kernel.

5.2 Verification of Isolation Properties

Isolation properties are the main and basic properties of the virtualisation layer. These
properties can be guaranteed under the assumption that the underlying hardware is trusted.

It means that the internal processor registers will work properly as well as the clock and
timers and other low level mechanisms. Assuming this correct behaviour, the virtualisation
layer has to extend it to the upper levels (partitions).

For the temporal and spatial isolation purposes, it is assumed:

 The access to the processor registers is only allowed when the processor is in

privileged mode. The processor mode can set/unset by accessing the control
processor status (PMS).

 The memory control using the MMU will raise an exception when a instruction tries
to write in protected areas. A memory area has associated a set of permissions that
allow to control who can read/write the memory regions.

 A specific timer is used by XtratuM to control the slot duration.

 I/O accesses are controlled building the appropriated I/O maps for each partition

jointly with its rights as defined in the configuration file. An exception could be raised
when a partition tries to access to non allowed I/O ports.

 The interrupt vector is handled exclusively by XtratuM. Its access/modification can be
done only when the processor is in privileged mode.

 XtratuM is executed in privileged processor mode whereas partitions are executed in

user processor mode.

On the other hand, the configuration vector (system configuration) specifies in XML the
resources allocation which contains the five main elements:.

D2.5 Definition of the Requirements for Validation

21

 Hardware. Specifies the board resources: CPU frequency, memory available, type of

memory, devices, etc.

 Hypervisor. Specifies the list of memory regions allocated to XtratuM, health monitor

actions to be done when exceptions are captured and if they are logged or not.

 Partition Table. Specifies the partition elements:

o Partition flags: specify if a partition will be booted by XtratuM, is a supervisor
partition, uses the floating point unit, etc.

o Amount of CPU allocated

o List of memory regions and access rights

o List of IO Ports allocated and access rights

o List of ports to perform inter-partition communication

o List of hardware interrupts allocated

o List of devices handled by the partition

o Trace size and allocation

 Scheduling Plan. Specifies the plan to be executed. It can include several modes and
for each mode the basic scheduling policy is a cyclic scheduler. For spare time other
policies can be specified.

 Channels A list of channels which define the port connections. For each channel, the

following information is specified: channel identifier, type, input and output ports,
maximum message size, maximum number of messages (queuing channels).

The configuration vector is seen as a contract between the system designer and the
platform. This configuration vector is compiled for a specific system deployment and
attached to the hypervisor code. The data structure obtained is seen by XtratuM as the
information source to guarantee the temporal and spatial isolation of the partitions.

5.3 Spatial isolation

Spatial isolation implies:

 Partitions cannot access to other memory addresses different to the allocated in the

configuration vector with the rights defined

 Partitions cannot access to other IO Ports different to the allocated in the
configuration vector with the rights defined

 Partition cannot use ports that are not defined in the configuration vector and its use
is coherent with it (source or destination)

 Partitions cannot handled interrupts different that the allocated in the configuration

vector

 Partitions cannot use devices different that the allocated in the configuration vector.

XtratuM will enforce all the hardware mechanism to guarantee that the spatial isolation is
guaranteed.

D2.5 Definition of the Requirements for Validation

22

5.4 Temporal isolation

Temporal isolation implies:

 Partitions are executed under a cyclic scheduler. The cyclic scheduler specifies a

schedule plan which consists in

o A Period: it is known as Major Frame (MAF) and is defined by the system
designer. Usually, the MAF is the lowest multiple period of the periodic
activities.

o Temporal window: specified as an offset with respect to the MAF and
duration.

o Partition: partition to be executed

 The schedule plan can contain not used temporal windows. This is assumed as spare
time not assigned to any partition.

 Partitions are executed only in the temporal windows (slots) specified in the
configuration vector.

 A partition will not be able to use the system resources if the clock does not match

with its temporal windows.

 If other policies are specified for using the spare time, those partitions that have
specified this policy in the configuration vector will be candidate to be executed
during the duration of the spare time.

 Other policies are limited to round robin between all partitions interested in the

spare time, or priority based.

5.5 Properties verification

The configuration vector included in the deployment specifies the behaviour of the system.
So, the hypervisor state is defined by:

 The current partition identifier

 The absolute time of current MAF origin

 The current clock value

 The current slot

 The current scheduling mode

 The hardware mechanisms: memory areas, I/O maps, interrupt vector, etc.

 Additional variables not directly related to the properties

The hypervisor can be invoked as consequence of a hypercall (a partition requests a service)
or an external interrupt or a trap occurs or temporal window has reached its end. In all these
cases except the temporal window end, the conditions associated to the execution remains.
It means that the same partition will still be executed at the end of the service or interrupt.

D2.5 Definition of the Requirements for Validation

23

In the case of the end of a temporal window, the hypervisor has to switch to execute

another partition. In this case, the new set of variables associated to the state has to be read
from the configuration vector and maintained during the next temporal window.

In order to validate the temporal and spatial properties, the hypervisor has to check that its
state is coherent with the configuration vector considering the current time. It means that
given a clock value and an execution mode, it determines:

 The current slot that should be under execution: comparing the current slot with the
specified in the configuration vector

 The current partition that should be under execution: comparing the current

partition with the specified in the configuration vector

 The memory areas and IO maps: comparing the current values with the specified in

the configuration vector

 The interrupt vector: comparing the current value with the specified in the
configuration vector

These comparisons determine the pre-conditions to be evaluated each time the hypervisor
is invoked. Once these conditions are successfully evaluate, the hypervisor executes modifies
these variables (i.e. to access to all memory maps), and executed the internal service.

These comparison should be evaluated at the end of the hypervisor execution (post-
conditions) in order to guarantee that the partition is executed again (or the new partition in
the case of a new slot) is going to be executed with the values specified in the configuration
file.

Some other isolation mechanisms that are related to offered services as hypercalls: The
parameters are analysed by the hypercall service in order to guarantee the isolation. In this
situation, the memory copy (XM_memory_copy) hypercall permits to copy a memory block
from a memory region to another. In this case the hypercall validates the parameters against
the configuration vector to allow the copy or reject the service.

D2.5 Definition of the Requirements for Validation

24

6 Conclusion

This document presented the methodologies and their dependant technical requirements to
validate an OVERSEE platform implementation.

Three main categories of validation have been described. The Conformance Testing aims to
validate communicating systems and their interfaces with respect to their specification.
Common Criteria defines a way to ensure that some security properties are enforced by an
implementation. Model Checking and verification techniques provides guarantee that a
model and its implementation enforces some critical properties as spatial and temporal
isolation.

This work will serve as an input for WP4 in which will be decided what has to be tested, the
used methodologies and the tool selected. Moreover, as soon the decision taken, WP4 will
prepare the support of validation by the implementation in cooperation with WP3.

D2.5 Definition of the Requirements for Validation

25

7 References

[1] European Telecommunications Standards Institute (ETSI). (1995) ETS 300 406: Protocole
and Profile Conformance Testing Specifications - Standardization Methodology. [Online].
http://portal.etsi.org/mbs/Referenced%20Documents/ets_300_406.pdf

[2] European Telecommunications Standards Institute (ETSI). (1995) ETR 266 standard:
Methods for Testing Specification (MTS) - Test Puropose Style Guide. [Online].
http://portal.etsi.org/mbs/Referenced%20Documents/etr_266.pdf

[3] International Organization for Standardization/ International Electrotechnical

Commission (OSI/IEC). (1995) ISO/IEC 9646 standard: Information Technology - Open
Systems Interconnection - Conformance Testing Methodology and Framework. [Online].
http://webstore.iec.ch/servlet/GetPreview?id=39516&path=info_isoiec9646-7en.pdf

[4] European Telecommunications Standards Institute (ETSI). TTCN-3: Testing and Test
Control Notation. [Online]. http://www.ttcn-3.org/home.htm

[5] Common Criteria v3.1. Release 3, Part 1: Introduction and general model. [Online].
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf

[6] Common Criteria v3.1. Release 3, Part 2: Security functional requirements. [Online].
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf

[7] Common Criteria v3.1. Release 3, Part 3: Security assurance requirements. [Online].

http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf

[8] Common Criteria v3.1. Release 3, Evaluation Methodology. [Online].
http://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R3.pdf

[9] (2011, April) Spin HomePage. [Online]. http://spinroot.com/spin/whatispin.html

http://portal.etsi.org/mbs/Referenced%20Documents/ets_300_406.pdf
http://portal.etsi.org/mbs/Referenced%20Documents/etr_266.pdf
http://webstore.iec.ch/servlet/GetPreview?id=39516&path=info_isoiec9646-7en.pdf
http://www.ttcn-3.org/home.htm
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R3.pdf
http://spinroot.com/spin/whatispin.html

D2.5 Definition of the Requirements for Validation

26

A. Selection of Modules - Methodology Notes

Open Source is fundamentally different than traditional commercial software in that there
generally are multiple versions of (constructively) competing software offerings that can
satisfy a specification. Due to the nature of pre-existing software though we have a different
selection process to look at:

 identify potential candidates

 Evaluate the suitability/stability/roadmap, etc.

 consider integration issues (technical and non-technical i.e. license)

 Obviously a simple ad-hoc selection of open-source components will not due in a complex
hardware software system, thus a systematic evaluation is needed. Notably as OVERSEE
targets a system with reliable system level security properties swell as the ability to achieve
later safety certification (even if currently de-scoped due to effort limitations) the selection
needs to be based on criteria not only covering functional but also non-functional
requirements.

With RH Enterprise having achieved EAL Level 4 certification (with a very specific
configuration - utilizing SELinux as the core LSM along with a number of other facilities at the
VFS and network level) it seems reasonable to argue the reuse of "proven-in-use"
components in the context of and entity anticipating an OVERSEE-platform certification. To
support such efforts our selection of components must be arguably sound and documented.

A.1.1 Assess the complexity of the underlying mechanism and its
adaptability

This was done by first analyzing the respective sources (and condensing this into a
presentation set), next a minimal prototype LSM (OVERSEE_lsm) was written that basically
added a trivial security hook to the relevant inter-partition communication extension
provided by XtratuM and the respective paravirtualization layer in the Linux kernel. This
hook was integrated and tested more or less stand-alone - functionally it was reduced,
limiting the action of the LSM to a pure reporting interface:

<snip> kernel dmesg output (TODO: cut&past)

A.1.2 Assessment of impact of modifications

As the code changes are minuscule and the interface to the LSM is generic (that is more or
less the same for all Linux LSMs currently supported), further the changes are well
encapsulated in the paravirtualization extension of the Linux kernel - provided by the
appropriate XtratuM kernel patch - the impact can be analyzed by local inspection. Note that
while these changes might lead to performance or stability impact, they are not expected to
break the security mechanism logic which is the key point with respect to security. This can
be assumed as the interface is well specified and thus provides a "contract based" model of
exchanging an existing LSM by an extended LSM.

D2.5 Definition of the Requirements for Validation

27

 LoC needed for minimal LSM: < 250 LoC

 Number of files changed: 7 (includeing Makefile/Kconfig)

 if enabled:
 security_* ---- > include/linux/security.h
 |
 ` - > security/security.c
 |
 ` - > security/trivial/trivial_lsm.c

 (note trivial/trivial_lsm.c is the prototype OVERSEE lsm implemented for demo purposes
and presented at the bochum meeting)

A.1.3 Assessment of available modules

There are a number of LSM modules integrated in the Linux kernel, with varying capabilities
and notably substantially varying complexity and thus runtime impact. The available in-tree
LSM are

Goals of LSM

Security is a main concern in GPOS - naturally GNU/Linux has been focused on security issues
- after all that is one of the things that distinguishes it from its main competitor... These
efforts have been focused on the kernel level in the 2.4 kernel series with increasing efforts
to extend it to user-space in a more formal manner in the 2.6 series of kernels - thus in early
2003 the proposal for the Linux Security Module (LSM) was integrated in the mainline Linux

development and accordingly tools (kernel, user-space and configuration) developed.

 Part of mainline Linux 2.6 since December 2003 - proven-in-use?

 security framework for mandatory access control

 establish common models of MAC implementation

 minimize changes to the Linux kernel (notably prevent duplication)

 ensuring completeness of coverage by hooks (see Using CQUAL for Static Analysis of
Authorization Hook Placement)

For details see http://www.usenix.org/event/sec02/zhang.html - we believe that this is a
suitable basis for building a strong and robust security module (MILS architecture) on top of

the XtratuM separation kernel that provides the "first-line-of-defence" in the oversee
architecture. The GNU/Linux runtime provided in the secure-I/O partition (providing overall
system device I/O) is thus already in a constraint environment. The final application
partitions can only communicate via the secure-I/O partition thus re-enforcement of the
security properties based on well established technologies including

 Linux Security Modules

 Fast User Space File system capabilities

 IP-tables / Traffic shaping

It seems a reasonable strategy to balance security demands and ease of use.

http://www.usenix.org/event/sec02/zhang.html

D2.5 Definition of the Requirements for Validation

28

Available LSM and very brief feature list:

To summarize the evaluation that has been done in the context of the investigation efforts
of WP2 and WP3, a brief listing of available security modules and there capabilities is:

 SELinux, label-based approach, integrated in Mailine Linux in early 2.6.X,

 AppArmor, path-based access control, integrated in Mainline as of 2.6.36

 http://en.opensuse.org/SDB:AppArmor, latest is 2.3

 Linux Intrusion Detection System, LIDS, www.lids.org, latest is 2.2.3rc9 for 2.6.31/32

 FireFlier, label socket with an application context, conceptually allowing the
interactive creation of rules, latest (obsolete?)

 CIPSO, IETF Commercial IP Security Option, IETF CIPSO Working Group,

o security attributes to outgoing network packets generated from applications

o read security attributes from incoming network packets

 SMACK, path based access control, Mainline as of

 TOMOYO, path-based access control, Mainline as of 2.6.30, latest version in mainline
2.2.0 (reduced feature set), 1.7.1 (extended feature set - patch required),
http://tomoyo.sourceforge.jp

Selecting the appropriate based to include our OVERSEE specific extensions is not primarily a
matter of writing code but a amateur of developing suitable specific requirements and

selecting the variant that has the best fit to the functional and assurance requirements.
While the functional requirements assessment at the technical level should be quite clear
the non-functional assessment does mandate some notes.

To develop a system that anticipates future certification it is essential to ensure that suitable

evidence of functionality, stability and reliability is available with adequate confidence - CC
nicely splits this in SFR and SAR - adopting this split we here focus on the SAR that can be
achieved for a FLOSS component.

A.1.4 QA ς Quality Assurance

 Repository traceable?

 Bug tracking?

 Mainline distribution usage?

 Mainline kernel integration?

 If not in mainline - how invasive is the patch?

 Test-suits available?

http://www.lids.org/
http://tomoyo.sourceforge.jp/

D2.5 Definition of the Requirements for Validation

29

A.1.5 Technical documentation available

Allowing to expect modification/extensions to be doable with reasonable probability of not
introducing systematic faults in the security related logic of the LSM.

A.1.6 Maintainability

 Roadmap available?

 Maintainer known/number of core developers?

 Community active?

 Support by vendor/commercial entity given?

Notably the maintainability criteria might seem a bit strange but it is not uncommon in
FLOSS developments to have technical superior solutions that are not well supported or lack
community endorsement and thus are not long-term stable. As the ways to ride dead horses
is well documented it is not necessary to add any further variants of this discipline in the
context of OVERSEE.

With this data at hand one then can do the final step of extending the open-source
component to fit the technical needs of the OVERSEE platform and integrate it into the
runtime environment. If the selection criteria have been well established and the necessary
evidence based considered during selection then this can significantly aid certification (both
security and safety).

D2.5 Definition of the Requirements for Validation

30

B. Conformance Testing: how implementation meets specifications?

Safety References related to the usage of pre-existing software - specifically NOT developed
for safety related usage.

B.1. Functional Safety related Standards

 IEC 61508-3 (edition 1998)

o 7.4.2.7 - demonstration of independence of software with mixed SIL levels

o 7.4.2.11 - requirements on pre-existing SW

 IEC 61508-3 (Edition 2011)

o 7.4.2.7/7.4.2.8

o 7.4.2.11/12 - requirements on pre-existing SW

 IEC 61508-7 (edition 1998)

o B5.2 Black Box testing (XM test suite)

o B5.4 Field Experience

o C5.1 Probabilistic Testing

IEC 61508 is a guiding, generic functional safety standard. Components certified to IEC 61508

can be re-used in the context of derived standards i.e. IEC 26262 (naturally with limitations
pertaining to the specific context). Thus taking, the generally far more strict, regime of IEC
61508 as a guidance for the argument development for COTS/FLOSS components allows a
reasonable probability of later certification efforts to be successful with tolerable effort.
Though OVERSEE is a prototype implementation of a technical solution and not a to-be-
certified product.

 IEC 26262-6:

o 8.4.5 swell as table 10 and 11

o 7.4.6 categorization of COTS for safety (EN 50128 3.18 open-source = COTS)

o 7.4.8 -> COTS certification 26262-8 Clause 12

 IEC 26262-8:

o 14 Proven in use argument explicitly noting:

Á Candidate being used in other safety-related industries; or

Á Candidate being a widely spread COTS product not necessarily
intended for automotive applications.

o All of clause 14 can and shall be applied.

 IEC 26262-9

o 5.4.6 ASIL decomposition

D2.5 Definition of the Requirements for Validation

31

Note that it is not an intent of OVERSEE to provide certification rather it is the intent of the

OVERSEE development to, with reasonable probability; prevent show stoppers from being
introduced that make a certification impossible. The clauses mentioned here are not being
followed in any formal way rather they have been reviewed to assess the feasibility of
certification of key OVERSEE components in the context of a safety assessment building on
pre-existing (COTS) arguments. Note further that EN 50128 (prEN 50128 2009) explicitly
identifies open-source as being equivalent to COTS in the context of safety related systems
(Clause 3.18) though EN 50128 is a rail standard, it is, being a transport standard, suitable for
cross-referencing when arguing suitability (might add that the safety requirements in Rail
are fundamentally more restrictive than the watered-down safety requirements for
automotive industry...)

B.2. DO 178B Software Considerations in Airborne Systems

Å Section 2

Å Subsection 2.4 (COTS issues)

Å Section 3

Å Subsection 3.2 (specifically component-Z example)

Å Section 12

Å All of clause 12 is of relevance

Obviously DO 178B is not applicable to OVERSEE directly though due to this standard being
well accepted and concise (notably compared to the mess that IEC 26262 provides) it is a

good starting point for introducing safety considerations in a project heavily building on
COTS/FLOSS components. Further due to XtratuM being targeting the "DO 178 market" and
the design being built on ARINC 653 (a prime Avionics standard for partitioning systems) it
seems natural to consider DO 178B as far as reasonably possible.

B.2.1 ARINC 653

Without further details - XtratuM the separation kernel in use in OVERSEE was designed and
implemented along the guidelines of ARINC 653. Being suitable for the avionics domain up to
Level A certified systems/components it seems more than suitable for the automotive
domain (a subjective claim would be that ASIL D is at best DO 178 B/C - see clause

2.2.1/2.2.2).

D2.5 Definition of the Requirements for Validation

32

B.3. IEC 15408 Common Criteria

A common criteria certification is against a specific protection profiles (PP) and in this sense
one cannot globally state that Linux has been certified to any EAL level. But taking the
current certification reports, which show that Linux has been certified to EAL4+ against the
following number of PPs - specifically:

 General Purpose Operating System Protection Profile (GP-OSPP)

 Controlled Access Protection Profile (CAPP)

 Labeled Security Protection Profile (LSPP)

 Role-Based Access Control Protection Profile (RBACPP)

 it is legitimate to claim that GNU/Linux can be certified to EAL4+.

Due to the role of security in OVERSEE we briefly outline The overall technologies for
certification of GNU/Linux against specific PPs that are in use (and available to the
GNU/Linux based partitions of OVERSEE):

 System wide governing Security Policy providing:

Domain/Type enforcements, MILS. This is provided by various LSMs currently available
(SELinux, SMAK, TOMOYO, etc). As OVERSEE is based on a separation kernel as the primary
isolation enforcement (spatial and temporal) this constitutes the second level of security
mechanisms. To effectively make use of the core mechanisms for security policy
enforcement at the partition level notably the secure I/O partition which is based on

GNU/Linux, extensions to the existing LSM (Linux Security Modules) is needed to account for
the kernel level extensions provided by the paravirtualization and the inter-partition
communication mechanisms. Rather than extending these to generic interfaces (i.e. sokets)
the extension of the LSM to intercept sensitive processing steps is being implemented (i.e. at
the queue management level of the virtual device layer in Xtratum)

 Access Control covering the primary user accessible resource in UNIX - files:

The layering of control policy enforcement in GNU/Linux is roughly traceable to the historic
development:

 Credentials

 Capabilities

 Namespaces

 Attributes

 Namespaces are provided for multiple facilities at kernel level, and can also be enforced
by VFS extensions (i.e. FUSE), attributes are a well known mechanism, notably extended
attributes provided in GNU/Linux as xattr and acsl in the context of Mandatory Access
Control scemes (i.e. SELinux). The capabilities cover the full spectrum of DAC, MAC and RDAC
(Role Based Access Control).

D2.5 Definition of the Requirements for Validation

33

 Memory Protection:

Memory protection comes in two levels in OVERSEE, at the core level XtratuM provides a
fundamental separation of memory areas at the partition level thus ensuring that security
properties at a pro-partition level actually can be established. A second "line of defense" is
then the usual OS level memory protection mechanisms - with potentially varying
capabilities and maturity.

GNU/Linux has a plethora of technologies fielded which address threats related to memory
protection issues, a few of which are PaX, ASLR (in mainline) ProPolice and Stack-smash-
protection as well as chroot jail hardening methods.

These methods allow to reinforce the GNU/Linux partitions of OVERSEE, notably the secure

I/O partition as this is obviously a major potential threat area.

 Identification and Authentication:

 Identification and Authentication is again covered by a broad range of facilities tightly
integrated in all mainline GNU/Linux distributions, notably PAM (pluggable authentication
modules) which is managed at kernel.org, appropriate account management as well as
authenticated user access.

In OVESEE the first level of identification is provided by XtratuM, as ARINC 653 mandates,
xtratum provides a static port attributes provided by the XtratuM core. These port attributes
include a unique partition identifier and a unique port name thus providing the first level of

identification in interpartition communication. Authentication is then at the partition level
(provided by services within the partition), building on secured data provided by the security
service partition.

 Cryptographic services:

Any sound security system needs to provide core services based on a certified random
number generator. These core services are provided by the security service module and,
where necessary, based on the hardware security module.

services: Cipher-based MAC (CMAC), Hash-based Message Authentication Code (HMAC),
Signature Verification/Generation, Cipher

