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Abstract 

This document contains an overview of the technical requirements to provide a validation of 
the OVERSEE platform. In the context of the project it means to define a set of 
methodologies, techniques and tools suitable to provide a sufficient validation of the various 
part of the platform to be compliant to some standard in security (and safety) as well to 
ensure that an implementation fits the OVERSEE platform specification. Each one can have 
consequences on the design of the platform. 
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1 Introduction 

The Open Vehicular Secure Platform (OVERSEE] project has produced this deliverable. It 
contains contribution from TRIALOG, escrypt GmBh, UPValencia and OpenTech. 

1.1 Scope and Objectives of the Document 

The scope of this document is to describes a set of methodologies based on well-known 
techniques and tools, to validate the different part of the OVERSEE platform. 

There are a number of methodologies to validate a product depending on its scope. Formal, 

semi-formal or practical conformance testing for communicating systems and verification by 
proof or model-checking for critical systems are examples of this diversity. 

In this document is presented some methodologies suited to validate the OVERSEE platform 
in its communication, security and isolation aspects. 

1.2 Document Outline 

The section 2 is a short overview of the state of the art in the three methodologies that will 
be used in the following of the project. 

The section 3 presents how to validate the communicating part of the system by 
conformance validation. The section 4 presents the application of Common Criteria to a 

specific subset of security objectives. Finally, a verification using Model-Checking of the 
isolation aspect of the OVERSEE platform is described in section 5. 
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2 State of the art: Overview of Validation possibilities 

2.1 Conformance Testing  

This section assesses  the use of typical communicating system testing approaches based on 
the ISO-9646 Standard and adapts it to the testing of certain aspects of the OVERSEE 
platform. The ISO standard is used as the foundation of the ETSI ETS-300.406 Standard. 

The purpose of conformance testing is to determine if system’s behaviour meets its 
specification. The specification could be literal as in most of the standard or based on a 
formal/semi-formal specification. The ISO-9646 standard defines the conformance testing 

for the implementation of protocols and therefore all communicating systems that use 
message-based communication. The conformance testing is one of the approaches to ensure 
the conformance of an implementation with respect to its definition but also to ensure the 
interoperability between multiple implementations. 

One of the main benefits of this kind of validation is that it can be applied to an 
implementation that code is not reachable. It is called Black Box testing by opposition to the 
White Box testing where the code is available to the test. 

Conformance testing should be used to validate both communication protocols and 
interfaces. Section 3 provides more information and describes the possible uses of 
Conformance Testing within the OVERSEE project. 

2.2 Common Criteria  

The Common Criteria (CC) is a collection of rules to formalize security evaluations. They were 
written in a joint effort by the government agencies responsible for IT security in various 

countries (e.g., NSA for the US, BSI for Germany etc.) These parties have a mutual agreement 
to recognize CC evaluation results.  

The CC first defines a model and a language in which security problems and solutions are 
described, and subsequently specifies a process how to evaluate a product depending on the 
required security level. Not only the implementation is evaluated, but also associated issues 
like development, testing, distribution etc. The evaluation procedure is very formal and 
modular which ensures the applicability of the method to a wide range of IT security 

problems while retaining comparability of security properties and evaluation results. 

The following roles are defined: the developer, the evaluator, the sponsor and the authority 
(commonly one of said government agencies). The role “customer” is indirectly involved. The 
sponsor arranges an evaluation of a product created by the developer to convince the 
customer that the product is secure to a certain degree.  To this end the sponsor employs an 
evaluator, who is accredited by the authority and is trusted by the customer.  

The end result is a widely recognized document which assures certain security properties of 
the product. 
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2.3 Verification of properties by Proof and Model Checking  

Over the last years, formal methods have become more and more important  
to assure the quality of software, and to complement traditional testing  
methods. The main problem of traditional testing methods is, that even for  
relatively simple applications, they can never be exhaustive, so formal methods are getting a 
more and more important part of quality assurance processes.  

 
The detailed evaluation of what methods can be smoothly integrated into the actual 
development process for OVERSEE, respectively which would be integrated in the form of 
proof-of-concept is still open as development has not yet fully started.  
Formal methods are seen as one strong catalogue of methods that can help resolve some of 

the open issues related to reusing existing components while operating in an environment 
that has not only security but also some limited safety and obvious availability demands.  
Based on the practical evaluation of existing tools a set will be proposed for integration into 
the OVERSEE build-environment 
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3 Conformance and Interoperability testing (Trialog) 

3.1 Introduction 

As stated in section 2.1 testing methodology is based on international standards. This work 
relies on the following ones: 

 ETS 300 406: Methods for Testing and Specification (MTS) - Protocol and Profile 
Conformance Testing Specifications - Standardization Methodology [1] .  

 ETR 266: Methods for Testing Specification (MTS) – Test Purpose Style Guide [2].  

 ISO/IEC 9646-x Information Technology - Open Systems Interconnection - 
Conformance Testing Methodology and Framework [3].   

The ETR 266 is not a standard but rather an informative document nevertheless it is still 
useful. 

3.1.1 Definitions 

Some definitions come with the standard. 

 ATC:  Abstract Test Case – A realisation of a test purpose. It is a complete 

specification of all the actions required to achieve this test purpose. It is written in a 
programming language specific to testing, e.g., TTCN. In general, each test case starts 

in a stable testing state and ends in a stable testing state 

 ATS: Abstract Test Suite – An abstract test suit is a collection of test cases that are 
used to test the Implementation Under Test to show that it correctly executes the 
specified set of behaviours. A test suite can include detailed instructions or goals for 

each collection of test cases as well as information on the system configuration to be 
used during testing. A test or group of tests may also contain prerequisite states or 
steps, and descriptions of resulting states or steps. 

 ETS: Executable Test Suite – This test suite can be executed by a program that can 

communicate with the System Under Test. Usually the ETS is automatically generated 
from the ATS. 

 IUT: Implementation Under Test – This is the particular portion of the System Under 
Test which is to be tested, e.g., the communication functions of a mobile phone but 
not the sound or screen functions. The IUT is viewed as a black box by the test 
system is compared to its specification 

 LT/UT: Lower Tester / Upper Tester – TTCN was first specified for protocol testing in 
the telecommunication domain. Therefore LT and UT refer to the layers of the 
protocol stack. Lower Tester: the test component of the test engine that 
communicates with the IUT via the Points of Control and Observation at the lower 
layer. Upper Tester: the test component of the test engine that communicates with 
the IUT via the Points of Control and Observation at the upper layer 
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 PCO: Point of Control and Observation – Communication between the test engine 

and the IUT is achieved via points of control and observation. PCOs are the only 
means that allow the test system to interact with the IUT.  At least one PCO is 
needed in a testing architecture. 

 SUT: System Under Test – defines the boundaries for the system that is being tested 

for correct operation, including the hardware and software, e.g., the complete 
hardware and software of a mobile telephone is the SUT when the IUT is the 
communication functions of the phone. Basically the system that contains the IUT. 
The IUT and the SUT can be the same in many cases          . Sometime the 
interfaces of the IUT are not directly available therefore the IUT is imbricate in the 
SUT           

 Test Case: A set of conditions or variables under which a test will determine whether 

an application or software system is working correctly or not. 

 Test Purpose: A prose description of a well-defined objective of testing, focusing on a 
single conformance requirement. It represents an abstract description of the test to 
be performed independently of any concrete realization. 

 Test Report: the result of each test generated by the Test System to provide data to 

evaluate the IUT’s conformance to the requirements 

 Test System (or Test Engine): includes the dedicated test system and the tests that it 
executes. It has full control over the SUT while stimulating it with relevant events and 
checking its resulting behaviour. 

 Testing and Test Control Notation (TTCN) [4]: a programming language standardised 

by ISO for the specification of tests for real-time and communicating systems, 
developed within the framework of standardised conformance testing (ISO/IEC 9646 
[3]). A TTCN test suite consists of multiple test cases written in the TTCN 
programming language. Dedicated compilers or interpreters are required for 
execution. 

3.1.2 Conformance Validation Process 

The process usually used to validate a protocol or a communicating system is usually the one 
described in Figure 1. 
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Figure 1: Conformance testing process 

The steps are the following: 

 According to the SUT and the available PCO a testing architecture is define enabling 

the test campaign. A test architecture is usually compose of some Testers connected 

to the PCO of the SUT that are able to communicate with the IUT 

 From the specification some test purposes are extracted. The test purposes can have 
different objectives:  to capture the technical description of the specification (e.g., 
the required functionalities), to test the boundary conditions and divergence of the 
specification (e.g. if a parameter can take two value ranges that lead to different 
behaviour problems usually occur at the boundaries), to test internal structure not 
accessible (e.g. the correct filling of a routing table). Depending on the format of the 
specification it can be manually (if it is a textual one) or automatically (in case of 
formal specification) 

 The test purposes serve to define various test scenarios in a dedicated format 

(usually the standard TTCN-3). Each test scenario describes a succession of actions 

that verify if the IUT react correctly to a precise sequence that fulfil one goal (i.e. test 
purpose). The whole test scenarios are the Abstract Test Suite (ATS). An ATS is usually 
readable and understandable. 

 From the Abstract Test Suite an Executable Test Suite (ETS) is generated. It is the 
translation of each test scenario from the TTCN-3 format to an executable code that 
will stimulate the real IUT through the Testers.  

 The test campaign consists in executing the ETS through the tester and to collect all 
the output from the IUT. If each input lead to an expected output then the verdict 
“Pass” is provided. That means that no error has been exhibited (and not that the 
implementation is without fault). If some output are not excepted the verdict is 
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therefore “Fail”. From the error detected, the implementation must be corrected and 

a new test campaign will be played later. 

With quite the same process interoperability testing could be performed between more than 
one implementation. 

 

Testing architectures are also defined in [1] [3]. The testing architecture is usually composed 
for protocol testing of: 

 An Upper Tester (UT) linked to a PCO between the IUT and the upper layers of the 
system. 

 A Lower Tester (LT) linked to a PCO between the IUT and the lower layers of the 

system.  

 A Test Engine to coordinate both testers and to evaluate the conformity of the test 
sequences. The coordination is usually unsure by a test coordination procedure 
(TCP) 

A representation of a local architecture (as define in [3]) within the conformance testing 
process is depicted in Figure 2 

 

Figure 2: Local Testing Architecture and Conformance Testing Process 

Interoperability is usually defined as following: Interoperability testing is the activity of 
proving that end-to-end functionality between (at least) two communicating systems is as 
required by those systems' base standards.  EG 202 237 describes a generic approach to 
interoperability testing. 

The interoperability testing relies on the same concept and phases even if their name can be 
slightly different. 

http://portal.etsi.org/mbs/Referenced%20Documents/eg_202_237.pdf
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3.2 Conformance testing in OVERSEE 

3.2.1 Goal of the Conformance Testing 

As the OVERSEE platform will support various communication protocols as well as multiple 
applications (mostly dedicated to enforces security and dependability in the system) it will 
be necessary to use the conformance testing 

 Conformance of protocol implementations: In order to ensure separation of 

concerns, there could be different test systems focusing on systems under test (SUT), 
i.e. different layers. 

 Conformance of interfaces: In order to ensure separation of concerns, there could be 

different test systems focusing on different interfaces. 

Even if the two goals are different the techniques are the same. As the design of the 
OVERSEE platform, the involved communication, the security services and most of the 
components are designed in the same time as this deliverable (see deliverables D2.1, D2.2, 

D2.3 and D2.4) it is not possible to drawn a precise picture of the testing architecture or the 
position of the PCOs. These concerns will be addressed in the coming WP4: Open Platform 
Validation Support. 

Within the OVERSEE project many protocols) are considered. Some of them are not yet well-
known as the ITS 5.9 GHz-based one. It will be necessary during the project, and for any 
development of such a platform to ensure the conformity of the implementation of the 
protocol (if it is not an already existing one) and the interoperability between the protocol 

itself and the interfaces of the platform. 

In a wider scope, any application running on top of the hypervisor layer is to be tested as 
interoperable with the platform itself. For instance, if a security service is implemented in 
the Security Services Partition, it has to be tested as: 

1. Conform to its specification 

2. Interoperable with the platform 

Limitation of the real implementation: A complete conformance and interoperability testing 
rely on a detailed and non-ambiguous specification of the system. Since OVERSEE aims to 
prove only the suitability and the feasibility of its approach to a real implementation, a 
complete conformance and interoperability testing seems not possible to perform along the 
project. Nevertheless, it is still possible to conduct a series of tests based on non-formal 

specific purposes to cope with the conformity and the interoperability of the various 
protocols and interfaces. 

3.2.2 High Level requirements for testability 

From the purpose of the Conformance testing as a validation methodology for the OVERSEE 
platform some technical requirements can be easily derived. 

In the Table 3-1 high level requirements are described by a categorization on their goal.  
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Req Global Requirements SubReq Requirement 

1 
Monitoring of the 
communication interface by 
the Test Tool 

1.1 
Platform provides Points of Control and 
Observation (PCOs) on each communication 
interface 

1.2 
The test tool must be able to plug on all the 
interfaces provided by the platform 

2 
Observability of the interfaces 
between the building blocks 
by the test tool 

2.1 
Each building block must be reachable i.e. 
“communication interface” even if 
communication is not really the good term 

2.3 
The test tool must be as fast as the building 
block (to avoid message congestion 

reaching the test tools) 

2.4 
The test tool must support the protocol used 
by the platform 

2.5 

The test tool must support and be coherent 
with the cryptographic, signature and keys 
used by the platform (can be divided in 
various requirements) 

3 
Reset ability of the system to 
the “initial state” 

 
Each building block must allow one to drive 
them in a known state, permitting therefore 
the test 

4 

Testability of non functional 
requirements (Observability 
of resources consumption by 
the test tool) 

 
The platform must provide an access to 
each resource to be tested. 

5 
Well-defined of API and Data 
of building blocks 

 
Each building block must specify clearly its 
API and the data exchanged (I/O) 

6 Responsivity of command  

Each building block must be able to provide 
a sort of acknowledgment that each 
command received has been performed 
(i.e. always an Output for an Input) 

Table 3-1 : High Level Requirements Table 

Security aspect: 

It is necessary to highlight that these requirements imply that only an authorized actor can 
be able to perform the test for security reasons.  

For instance the requirement 1.1 could be described as: Each communication interface in 
the OVERSEE platform have to be reachable for an external and authorized user to allow 
verification and validation. It means that some PCOs must been reachable for an authorized 
tester. This requirement will allow one to perform a wide range of functional validation. If 
anyone can use the PCO it could have a great negative impact on the system. 
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4 Security Services Validation 

4.1 General CC Process 

The product or system that is the subject of the evaluation is called TOE (Target of 
Evaluation) [5].  

In a first step the developer prepares a ST (Security Target) about the TOE. This is a 
document consisting of: 

 introduction 

 conformance claim 

 security problem definition 

 security objectives 

 extended components definition 

 security requirements 

 TOE summary specification 

The security requirements in turn are composed of 

 SFR (security functional requirements) 

SFRs are formalized specifications of the security functions, consisting of predefined 
functions [6] and additional parts defined by the developer in the section “extended 
components definition” 

The developer models the security functions of the TOE in terms of these defined 
SFRs. 

 SAR (security assurance requirements) 

SAR’s specify how the TOE should be developed, implemented and evaluated. SAR’s 

are divided into the following classes: 
o Development 

o Documentation 

o Life Cycle Support 

o Security Target Evaluation 

o Tests 

o Vulnerability Assessment 

Every SAR specifies the actions to be done in the evaluation process by the developer 
on the one hand and by the evaluator on the other hand, and as well the documents 
to be produced. 

All possible SARs are pre-specified in [7]. Many of them are available in different 
hierarchical graded variants. Based on the desired assurance level an adapted subset 

is selected for an ST. 

An Evaluator then carries through the actions described in the SARs and assures that the 
Developer has fulfilled all the requirements made there. This is described in [7], in [8] there 
is a more detailed explanation of this process. The TOE has to fulfill every criterion for a 
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successful evaluation (or a version thereof that was sanitized of proprietary information).In 

the final stage an evaluation report together with the ST is published. 

It is important to notice that the CC do not require certain security properties by itself. The 
disadvantage of this approach is that a customer cannot rely blindly on a “certificate”, but 
has to compare the ST to his requirements first.  The advantage of this approach is that it is 
very flexible and applicable to a wide range of IT products. 

4.2 Application to OVERSEE 

4.2.1 Introduction 

Our implementation of OVERSEE will be a Proof-of-Concept. At a later point in time 
production implementations will be created. The goal is to support developers of those 
implementations with the evaluation of their product. Currently the evaluation approach in 
the Common Criteria is not tailored to the automotive area. In WP4 we will therefore adapt 
the Common Criteria approach and apply it to our design and proof of concept 
implementation. Consequentially we will abbreviate steps that are too specific to our 
implementation and as a result would not be helpful to the developers for the evaluation of 
actual implementations. 

TOE will be composed of: 

 Security Services Partition 

 Security Services Provider Module (SSPM) 

 Hardware Security Module (HSM) 

XtratuM itself as well as the HSM itself will be excluded from the evaluation, which means: 

 The HSM is assumed to be secure. 

 The communication between the Security Partition and the HSM is assumed to be 

secure and unreachable by an attacker. 

 Communication between the SSPM and the Security Services Partition is assumed to 

be secured by XtratuM, which means it cannot be attacked from other partitions that 

are not involved. 

 The isolation provided by XtratuM is assumed secure. 

 As a result the only interfaces that are considered exposed to attacks are the 

connection between a user partition and the Security Services Partition, and, to a 

limited degree, the API of the SSPM. 

4.2.2 Evaluation Support 

We will now give an overview of the process and decide where we will support the 
developer of a productive implementation. 
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4.2.3 Development 

Most of the requirements in this section are general enough to be useful to support 

evaluation of actual implementations. They result mainly in an extensive documentation. 

 

 Security architecture description (ADV_ARC) 

Here the developer first has to ensure, that the security functions cannot be 

bypassed, and that the TOE protects itself from tampering. Then he has to describe 

the security architecture of the TOE. 

 A functional specification of the security functions has to be given. (ADV_FSP) 

 The Implementation representation (i.e. the source code) has to be provided 

(ADV_IMP) 

 The design has to be described. (ADV_TDS) 

4.2.3.1 Guidance Documents 

The CC requires a complete, detailed user guide for all kinds of persons using the external 
interfaces of the TOE, including developers, administrators and normal users. We will only 
have a rudimentary user interface for demonstration purpose, so there is no use in 
extensively documenting the interface for users and administrators, but we will document 
the API for developers. 

Also the description of preparative procedures lies outside of our scope. 

4.2.3.2 Life Cycle Support 

Our implementation will be a prototype, so this section doesn’t apply. Nevertheless by using 

sound development practices one already fulfills a larger part of the requirements in this 

section, e.g., version control systems, build systems, bug tracking, coding standards etc… 

4.2.3.3 Security Target Evaluation 

In this part the exact requirements for the ST are given. As the ST is a document on a rather 
high level, it should be applicable to most implementations of the security services in 

OVERSEE with minor changes. 
We will in general adhere to the most recent CC version, this is version 3.1.  

This is also the place to include Protection Profiles (PP) that are to be fulfilled. A PP is 

structurally similar to an ST, but it deals with abstract classes of TOE, instead with concrete 

TOE. There are some predefined PP available on [TBD]. An ST author can then claim 

conformance to (or “include”) as many of these PP as he like and then has to fulfill all of 

them. This is a practical way to facilitate ST creation, but unfortunately there is no PP 

available that is usable for our purpose. 

The predefined SFR will likely not be sufficient in this automotive application, so we will have 

to define some extensions. 
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4.2.3.4 Tests 

Here the security functions of the TOE are to be tested. This is a special case of testing, 
because the focus is on security. An analysis of the coverage and the depth of the supplied 
tests will also be done. 

All material generated in this task should be directly reusable by developers of future 
implementations of OVERSEE, as long as APIs are concerned. 

4.2.3.5 Vulnerability Assessment 

The evaluator has to conduct a vulnerability assessment, based on a predefined model of an 
attacker. Unfortunately this process strongly depends on the actual implementation; hence 

if at all we will only be able to give hints to where vulnerabilities may occur. 
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5 Verification of Isolation Property  

5.1 State of the art of the techniques  

5.1.1 General introduction to the core problem 

 Complex code has a very large state space, making exhaustive testing practically impossible. 
Think of a trivial function to add two integers. 

int add(int *a, int *b) 

 The total input space of this function, for a 32 bit system, is the combinatorial size of the 
inputs, which would be 2^32 * 2^32 - that is 18446744073709551616 possible inputs - the 
reason why this can't be exhaustively tested is I guess evident. 

 So all formal methods are targeting to reduce the state space to a reasonable size allowing 
to cover as much as necessary to prove specific properties. 

State space reduction - a brief summary: 

 State space reduction can be done by a lot of technologies and many of the model checkers 
have gained there suitability for large software systems only due to extensive research on 
state space reduction methods and optimal state space traversal strategies (i.e. SPIN [9]) 
some very general methods: 

 reduce state space based on heuristics: 

o lint Ą based on heuristics 

o sparse Ą known problem checker in specific context 

 reduce state space to the part related to the bug ! 

o satabs Ą reduction by iterative refinement (CEGAR) 

o stanse Ą reduction by "Finite State Machine(FSM) extraction" 

 Many of the tools use a combination of strategies, as this is not relevant at this point we will 
not go into further details of state space reduction methods. 

 Aside from the state space problem we also have a serious problem with describing the 

necessary properties in machine readable form - computers are not too good at 
understanding language that is easy for humans to comprehend, thus a more formal 
language is needed. One big show-stopper for formal specification and consequent 
validation has been the very non-intuitive language constructs used to specify such systems. 
This has changed to some degree in the past decade. In the following section we exemplify 
these changes by showing concrete examples of some tools. 

 



D2.5 Definition of the Requirements for Validation 

15 

 

5.1.2 Formal specification of critical properties: 

The properties of critical calls can be specified in a language suitable for interpretation by 
bounded model checkers (i.e. CBMC) - allowing to certify that a particular piece of code is 
satisfying a set of claims that are automatically generated. This is achieved by symbolic 
execution allowing to cover the complete relevant state-space of the described code. The 
level of detail of claims can be from relatively simple context checking i.e.: 
unsigned long __get_free_page(gfp_t gfp_mask)  

{  
 __CPROVER_HIDE: 
    if (gfp_mask & __GFP_WAIT) {  
        assert_context_process();  
    }  
}  

typical availability problems, like deadlocks, that are hard (or impossible) to detect by 
traditional testing due to the size of the state-space: 
void spin_lock(spinlock_t * lock)  

{  
 __CPROVER_HIDE: 
 
#ifdef DDV_ASSERT_SPINLOCK  
    __CPROVER_atomic_begin();  
    __CPROVER_assert(lock - >init, "Spinlock is not 
initialized");  
    __CPROVER_atomic_end();  
#endif  
 
    do 

    {  
        __CPROVER_atomic_begin();  
        if(lock - >locked == 0)  
        {  
                lock - >locked = 1;  
                __CPROVER_atomic_end();  
                return;  
        }  
        __CPROVER_atomic_end();  
    }  
    while(1);  
}  

To assessing the correctness of dependant code, i.e. the initialization and the runtime usage 
of specific address ranges: 

Note that the request call not necessarily is in close proximity to the actual accessed code, 
further code may well be misinterpreted by humans, i.e. traditional off-by-one array issues 
or the like. With a simple recording - shown here for the request region call in the Linux 
kernel and a subsequent test for the use of the proper port value in later calls (below) a set 
of correctness properties can be derived automatically and then verified with the 
aforementioned tool CBMC. 

 
struct resource *request_region(unsigned long start, unsigned 

long len, const char *name)  
{  
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  unsigned int i;  

    struct  resource *resource = (struct 
resource*)malloc(sizeof(struct resource));  
 
    ddv_ioport_request_start = start;  
    ddv_ioport_request_len = len;  
 
    return resource;  
}  
 
 
void outb_p(unsigned char byte, unsigned int port)  
{  
 __CPROVER_HIDE: 
    ddv_correc t_port_use(port);  
}  

 

The essence of these seemingly simple examples is the automation, allowing to verify 
semantic properties of complex code as a routine effort during development rather than 
trying to test all possible combinatorials - an obviously impossible task for even the most 
trivial function. 

 

Frama-c/ACSL: 

 Frama-c is a framework not in itself a tool. It contains a large number of tools to generate 
basic analysis based on different plug-ins allowing to provide formal specification of simple 
properties - i.e. locking correctness properties by providing formal specifications in ACSL 

right in the code. 
/*@ 
  requires \ valid(ghost_loctable + m);  
  requires !ghost_loctable[m];  
  ensures ghost_loctable[m];  
  assigns ghost_loctable;  
 */  
void acquire_lock( int m) { ghost_loctable[m]++; }  
 
/*@ 
  requires \ valid(ghost_loctable + m);  
  requires ghost_loctable[m]==1;  
  ensures !ghost_loctable[m];  
  assigns ghost_loctable[..];  
 */  

void release_lock(int m) { ghost_loctable[m] -- ; }  

or providing formal specifications of function prototypes allowing to include them as 
specification files: 
/*@ requires \ valid(p) && \ valid(q);  
    ensures *p <= *q;  
    ensures (*p == \ old(*p) && *q == \ old(*q)) ||  
               (*p == \ old(*q) && *q == \ old(*p));  
*/  
void max_ptr(int* p, int*q);  

one of the essential properties of formal specification close to the code level is that it allows 
to provide complete contracts that map to the code and thus allow verifying very specific 
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properties of the actual code. Any change to the code that might only have a side effect in a 

corner case - and thus evades detectio n by testing is highly probable to be detected 
provided the specification actually constitutes a complete contract.  
#include <stdio.h>  
int foo(int  x) {  
    while (x > 0) {  
      /* @ breaks x % 11 == 0 && x == \ old (x);  
         @ continues (x+1) % 11 != 0 && x % 7 == 0 && x == 
\ old (x) - 1;  
         @ returns ( \ result +2) % 11 != 0 && ( \  result +1) % 7 
!= 0  
         @           && \  r e s u l t % 5 == 0 && \ result == 
\ old (x) - 2;  
         @ ensures (x+3) % 11 != 0 && (x+2) % 7 != 0 && (x+1) 
% 5 != 0  

         @           && x == \ old (x) - 3;  
         @ */  
      {  
         if (x % 11 == 0)     break ;  
         x-- ;  
         if (x % 7 == 0)   continue ;  
         x++;  
         if (x % 5 == 0)    return x;  
         x-- ;  
      }  
    }  
    return    x;  
}  

 practically this provides a form of development level diversity, that is the developer is 

required to keep code and specification in sync thus making it quite unlikely that a undesired 
and unintended behaviour would be on the one hand coded and on the other hand specified 
formally - though of course this is not impossible. 

 A further advantage of this form of formal specification is the close proximity of the 

specification and the actual implementation, typically writing lengthy specifications just 
results in the same being at best ignored in the worst case misinterpreted and the diversion 
not detected due to the high effort necessary to actually detect such a semantic mismatch 
(assuming that the compiler is taking care of the syntactic properties sufficiently well). 

5.1.3 Tracking tools 

 Tracking has a few dimensions in complex software, one issue is tracking the sources and 
the changes, with hopefully meaningful commit messages. A further dimension is tracking 
movement of code and correlation of code/bugs in a dynamic code base. These properties 
are not satisfied by most content management system - including the currently in mis-used 
subversion repository (an aggregation of primarily meaningless commit messages is 
testimony to how little utility a pure content management system actually is). Proper tools, 
notably those that have proven the test of time in large software projects like the Linux 
kernel are: 
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5.1.3.1 Source tracking with GIT 

Probably THE revision control and source tracking tool in the FLOSS world is GIT. Coming out 
of the need for an open source distributed RCS system, GIT developed very fast, and is now 
in use at almost all major FLOSS projects. Also repository hosting sites as e.g. github or 
gitorious reflect the popularity of GIT. The most noticeable advantage of GIT is it's 
distributed architecture, allowing all possible workflows. Furthermore, the "everything is 
local" paradigm, not only allows the offline use of GIT, but also makes it very fast compared 
to traditional centralized repositories (e.g., subversion), making speed a major advantage of 
GIT. 

Apart from that GIT offers lots of possibilities to maintain the traceability of source code. 
These tools to trace the origin of the source code start at the commit level (git log), down to 
every single line (git blame). Furthermore tags like signed-off-by or reviewed-by allow the 

traceability of reviews at the patch level. One bit feature of GIT is the possibility of 
integrating other tools of your development life cycle via GIT hooks. This could i.e. be used 
to automatically check the coding style, run some formal tools like static code checkers on 
every modified source file, ... 

5.1.3.2 Context sensitive semantic tracking Herodotos 

Detecting bugs is the first step, but bugs tend to move in the code, especially during 
development, tracking bugs only at the level of the human context (i.e. files, directories) 
does not do it - they will reappear in different locations, resulting in hours wasted manually 
re-identifying the culprit. Automatic tracking in database tools is a first step, allowing to 

determine regressions and maybe prioritize certain problems - there is a plethora of tools to 
do this (bugzilla, ticket systems, etc) 

The fundamental problem with these database focussed solutions though is that all tools 
result not only in detection of bugs but also in a certain rate of false positives being 

reported. These then can be cleared by manual inspection... which is obviously not a very 
efficient way and also lacks effectiveness as we tend to become sloppy if we are ask to re-
inspect the same sequence over and over again - most notably in security related systems 
this can be fatal. What is needed is a tracking system that can correlate moving false 
positives to ensure that the one-time in-depth inspection is sufficient. 

 Tracking the movement of bugs/tests etc. in dynamic code by correlation is the next step, 
allowing to ensure focus on actual bugs rather than on manually context evaluation and 

correlation. One tool that has proven to be suitable in a number of large projects, e.g., the 
Linux kernel, the wine OS API, the openssl security library or the VLC media player, is 
herodotos. 

5.1.3.3 Change management 

Humans are notoriously bad at repetitive and monotone work like updating APIs in a large 
code base. This will happen, and the later in the development it happens the more likely it is 
that in the overall complexity of the code base and the "last minute panic" subtle semantic 
changes occur that raise security critical corener cases to the level of exploitable bugs. 
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As described above the formal specification can help ensure that the code at the specific 

location is in sync with the specification, but how to keep the API semantically (not just 
syntactically!) in sync over a large code tree? Tools that allow these must not only 
understand complex semantics of code, but also allow to detect isomorphic code constructs 
and nested constructs. One such tool that has been in wide use in the Linux kernel is 
coccinelle. This semantic patch tool allows specifying a semantic change and the contextual 
specification and then automatically generate a patch that can then be applied to  alarge 
code based with the automatic tool spatch. 

 As an example here is the update of a Linux kernel api: 
// Copyright: (C) 2009 Gilles Muller, Julia Lawall, INRIA, 
DIKU.  GPLv2.  
 
@has_sc1@ 

@@ 
 
#include <linux/serial_core. h> 
 
@has_sc2@ 
@@ 
 
#include <linux/serial_8250.h>  
 
@depends on has_sc1 || has_sc2@  
@@ 
 
-  SERIAL_IO_MEM 
+ UPIO_MEM 

 This seemingly trivial update of a macro is context sensitive, and this context can be suitably 
described by coccinelle to allow patching the right sources that satisfy the respective 
constraints. A further example is maybe a bit more intuitive showing an actual API change: 

 
// Copyright: (C) 2009 Gilles Muller, Julia Lawall, INRIA, 
DIKU.  GPLv2.  
 
@@ 
struct device dev;  
exp ression E;  
type T;  
@@ 
 
-  dev.driver_data = (T)E  

+ dev_set_drvdata(&dev, E)  
 
@@ 
struct device *dev;  
expression E;  
type T;  
@@ 
 
-  dev - >driver_data = (T)E  
+ dev_set_drvdata(dev, E)  
 
@@ 
struct device dev;  
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type T;  

@@ 
 
-  (T)dev.driver_data  
+ dev_get_drvdata(&dev)  
 
@@ 
struct device *dev;  
type T;  
@@ 
 
-  (T)dev - >driver_data  
+ dev_get_drvdata(dev)  

 

Thus all semantically legal case of the old call dev->driver_data are properly descried and 
handled - thus ensuring that all instances of the old API are handled (call by value, call by 
reference and casted versions) 

It should be noted that this is not a lexical description but actually a semantical description, 
thus this will match in all representations that are legal in the C language used in the Linux 
kernel. 

5.2 Verification of Isolation Properties 

Isolation properties are the main and basic properties of the virtualisation layer. These 
properties can be guaranteed under the assumption that the underlying hardware is trusted. 

It means that the internal processor registers will work properly as well as the clock and 
timers and other low level mechanisms. Assuming this correct behaviour, the virtualisation 
layer has to extend it to the upper levels (partitions). 

For the temporal and spatial isolation purposes, it is assumed: 

 The access to the processor registers is only allowed when the processor is in 

privileged mode. The processor mode can set/unset by accessing the control 
processor status (PMS).  

 The memory control using the MMU will raise an exception when a instruction tries 
to write in protected areas. A memory area has associated a set of permissions that 
allow to control who can read/write the memory regions. 

 A specific timer is used by XtratuM to control the slot duration. 

 I/O accesses are controlled building the appropriated I/O maps for each partition 

jointly with its rights as defined in the configuration file. An exception could be raised 
when a partition tries to access to non allowed I/O ports. 

 The interrupt vector is handled exclusively by XtratuM. Its access/modification can be 
done only when the processor is in privileged mode. 

 XtratuM is executed in privileged processor mode whereas partitions are executed in 

user processor mode. 

On the other hand, the configuration vector (system configuration) specifies in XML the 
resources allocation which contains the five main elements:. 
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 Hardware. Specifies the board resources: CPU frequency, memory available, type of 

memory, devices, etc. 

 Hypervisor. Specifies the list of memory regions allocated to XtratuM, health monitor 

actions to be done when exceptions are captured and if they are logged or not. 

 Partition Table. Specifies the partition elements: 

o Partition flags: specify if a partition will be booted by XtratuM, is a supervisor 
partition, uses the floating point unit, etc. 

o Amount of CPU allocated  

o List of memory regions and access rights  

o List of IO Ports allocated and access rights 

o List of ports to perform inter-partition communication 

o List of hardware interrupts allocated 

o List of devices handled by the partition 

o Trace size and allocation 

 Scheduling Plan. Specifies the plan to be executed. It can include several modes and 
for each mode the basic scheduling policy is a cyclic scheduler. For spare time other 
policies can be specified. 

 Channels A list of channels which define the port connections. For each channel, the 

following information is specified: channel identifier, type, input and output ports, 
maximum message size, maximum number of messages (queuing channels). 

The configuration vector is seen as a contract between the system designer and the 
platform. This configuration vector is compiled for a specific system deployment and 
attached to the hypervisor code. The data structure obtained is seen by XtratuM as the 
information source to guarantee the temporal and spatial isolation of the partitions. 

5.3 Spatial isolation 

Spatial isolation implies:  

 Partitions cannot access to other memory addresses different to the allocated in the 

configuration vector with the rights defined 

 Partitions cannot access to other IO Ports different to the allocated in the 
configuration vector with the rights defined 

 Partition cannot use ports that are not defined in the configuration vector and its use 
is coherent with it (source or destination) 

 Partitions cannot handled interrupts different that the allocated in the configuration 

vector 

 Partitions cannot use devices different that the allocated in the configuration vector. 

XtratuM will enforce all the hardware mechanism to guarantee that the spatial isolation is 
guaranteed. 
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5.4 Temporal isolation 

Temporal isolation implies: 

 Partitions are executed under a cyclic scheduler. The cyclic scheduler specifies a 

schedule plan which consists in 

o A Period: it is known as Major Frame (MAF) and is defined by the system 
designer. Usually, the MAF is the lowest multiple period of the periodic 
activities. 

o Temporal window: specified as an offset with respect to the MAF and 
duration. 

o Partition: partition to be executed 

 The schedule plan can contain not used temporal windows. This is assumed as spare 
time not assigned to any partition.  

 Partitions are executed only in the temporal windows (slots) specified in the 
configuration vector. 

 A partition will not be able to use the system resources if the clock does not match 

with its temporal windows. 

 If other policies are specified for using the spare time, those partitions that have 
specified this policy in the configuration vector will be candidate to be executed 
during the duration of the spare time. 

 Other policies are limited to round robin between all partitions interested in the 

spare time, or priority based. 

 

5.5 Properties verification 

The configuration vector included in the deployment specifies the behaviour of the system. 
So, the hypervisor state is defined by: 

 The current partition identifier 

 The absolute time of current MAF origin 

 The current clock value 

 The current slot 

 The current scheduling mode 

 The hardware mechanisms: memory areas, I/O maps, interrupt vector, etc. 

 Additional variables not directly related to the properties 

The hypervisor can be invoked as consequence of a hypercall (a partition requests a service) 
or an external interrupt or a trap occurs or temporal window has reached its end. In all these 
cases except the temporal window end, the conditions associated to the execution remains. 
It means that the same partition will still be executed at the end of the service or interrupt.  
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In the case of the end of a temporal window, the hypervisor has to switch to execute 

another partition. In this case, the new set of variables associated to the state has to be read 
from the configuration vector and maintained during the next temporal window. 

In order to validate the temporal and spatial properties, the hypervisor has to check that its 
state is coherent with the configuration vector considering the current time. It means that 
given a clock value and an execution mode, it determines: 

 The current slot that should be under execution: comparing the current slot with the 
specified in the configuration vector 

 The current partition that should be under execution: comparing the current 

partition with the specified in the configuration vector 

 The memory areas and IO maps: comparing the current values with the specified in 

the configuration vector 

 The interrupt vector: comparing the current value with the specified in the 
configuration vector 

These comparisons determine the pre-conditions to be evaluated each time the hypervisor 
is invoked. Once these conditions are successfully evaluate, the hypervisor executes modifies 
these variables (i.e. to access to all memory maps), and executed the internal service. 

These comparison should be evaluated at the end of the hypervisor execution (post-
conditions) in order to guarantee that the partition is executed again (or the new partition in 
the case of a new slot) is going to be executed with the values specified in the configuration 
file. 

Some other isolation mechanisms that are related to offered services as hypercalls: The 
parameters are analysed by the hypercall service in order to guarantee the isolation. In this 
situation, the memory copy (XM_memory_copy) hypercall permits to copy a memory block 
from a memory region to another. In this case the hypercall validates the parameters against 
the configuration vector to allow the copy or reject the service. 
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6 Conclusion 

This document presented the methodologies and their dependant technical requirements to 
validate an OVERSEE platform implementation. 

Three main categories of validation have been described. The Conformance Testing aims to 
validate communicating systems and their interfaces with respect to their specification. 
Common Criteria defines a way to ensure that some security properties are enforced by an 
implementation. Model Checking and verification techniques provides guarantee that a 
model and its implementation enforces some critical properties as spatial and temporal 
isolation. 

This work will serve as an input for WP4 in which will be decided what has to be tested, the 
used methodologies and the tool selected. Moreover, as soon the decision taken, WP4 will 
prepare the support of validation by the implementation in cooperation with WP3. 
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A.  Selection of Modules - Methodology Notes 

Open Source is fundamentally different than traditional commercial software in that there 
generally are multiple versions of (constructively) competing software offerings that can 
satisfy a specification. Due to the nature of pre-existing software though we have a different 
selection process to look at: 

 identify potential candidates 

 Evaluate the suitability/stability/roadmap, etc. 

 consider integration issues (technical and non-technical i.e. license) 

 Obviously a simple ad-hoc selection of open-source components will not due in a complex 
hardware software system, thus a systematic evaluation is needed. Notably as OVERSEE 
targets a system with reliable system level security properties swell as the ability to achieve 
later safety certification (even if currently de-scoped due to effort limitations) the selection 
needs to be based on criteria not only covering functional but also non-functional 
requirements. 

With RH Enterprise having achieved EAL Level 4 certification (with a very specific 
configuration - utilizing SELinux as the core LSM along with a number of other facilities at the 
VFS and network level) it seems reasonable to argue the reuse of "proven-in-use" 
components in the context of and entity anticipating an OVERSEE-platform certification. To 
support such efforts our selection of components must be arguably sound and documented. 

A.1.1  Assess the complexity of the underlying mechanism and its 
adaptability 

This was done by first analyzing the respective sources (and condensing this into a 
presentation set), next a minimal prototype LSM (OVERSEE_lsm) was written that basically 
added a trivial security hook to the relevant inter-partition communication extension 
provided by XtratuM and the respective paravirtualization layer in the Linux kernel. This 
hook was integrated and tested more or less stand-alone - functionally it was reduced, 
limiting the action of the LSM to a pure reporting interface: 

<snip> kernel dmesg output (TODO: cut&past) 

A.1.2  Assessment of impact of modifications 

As the code changes are minuscule and the interface to the LSM is generic (that is more or 
less the same for all Linux LSMs currently supported), further the changes are well 
encapsulated in the paravirtualization extension of the Linux kernel - provided by the 
appropriate XtratuM kernel patch - the impact can be analyzed by local inspection. Note that 
while these changes might lead to performance or stability impact, they are not expected to 
break the security mechanism logic which is the key point with respect to security. This can 
be assumed as the interface is well specified and thus provides a "contract based" model of 
exchanging an existing LSM by an extended LSM. 
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  LoC needed for minimal LSM: < 250 LoC  

  Number of files changed: 7 (includeing Makefile/Kconfig)  
 
       if enabled:  
         security_* ---- > include/linux/security.h  
           |  
           ` - > security/security.c  
                  |  
                  ` - > security/trivial/trivial_lsm.c  

 (note trivial/trivial_lsm.c is the prototype OVERSEE lsm implemented for demo purposes 
and presented at the bochum meeting) 

A.1.3  Assessment of available modules 

There are a number of LSM modules integrated in the Linux kernel, with varying capabilities 
and notably substantially varying complexity and thus runtime impact. The available in-tree 
LSM are 

Goals of LSM 

Security is a main concern in GPOS - naturally GNU/Linux has been focused on security issues 
- after all that is one of the things that distinguishes it from its main competitor... These 
efforts have been focused on the kernel level in the 2.4 kernel series with increasing efforts 
to extend it to user-space in a more formal manner in the 2.6 series of kernels - thus in early 
2003 the proposal for the Linux Security Module (LSM) was integrated in the mainline Linux 

development and accordingly tools (kernel, user-space and configuration) developed. 

 Part of mainline Linux 2.6 since December 2003 - proven-in-use? 

 security framework for mandatory access control 

 establish common models of MAC implementation 

 minimize changes to the Linux kernel (notably prevent duplication) 

 ensuring completeness of coverage by hooks (see Using CQUAL for Static Analysis of 
Authorization Hook Placement) 

For details see http://www.usenix.org/event/sec02/zhang.html - we believe that this is a 
suitable basis for building a strong and robust security module (MILS architecture) on top of 

the XtratuM separation kernel that provides the "first-line-of-defence" in the oversee 
architecture. The GNU/Linux runtime provided in the secure-I/O partition (providing overall 
system device I/O) is thus already in a constraint environment. The final application 
partitions can only communicate via the secure-I/O partition thus re-enforcement of the 
security properties based on well established technologies including 

 Linux Security Modules 

 Fast User Space File system capabilities 

 IP-tables / Traffic shaping 

It seems a reasonable strategy to balance security demands and ease of use. 

http://www.usenix.org/event/sec02/zhang.html
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Available LSM and very brief feature list: 

To summarize the evaluation that has been done in the context of the investigation efforts 
of WP2 and WP3, a brief listing of available security modules and there capabilities is: 
 

 SELinux, label-based approach, integrated in Mailine Linux in early 2.6.X, 

 AppArmor, path-based access control, integrated in Mainline as of 2.6.36 

 http://en.opensuse.org/SDB:AppArmor, latest is 2.3 

 Linux Intrusion Detection System, LIDS, www.lids.org, latest is 2.2.3rc9 for 2.6.31/32 

 FireFlier, label socket with an application context, conceptually allowing the 
interactive creation of rules, latest (obsolete?) 

 CIPSO, IETF Commercial IP Security Option, IETF CIPSO Working Group,   

o security attributes to outgoing network packets generated from applications 

o read security attributes from incoming network packets 

 SMACK, path based access control, Mainline as of 

 TOMOYO, path-based access control, Mainline as of 2.6.30, latest version in mainline 
2.2.0 (reduced feature set), 1.7.1 (extended feature set - patch required), 
http://tomoyo.sourceforge.jp 

Selecting the appropriate based to include our OVERSEE specific extensions is not primarily a 
matter of writing code but a amateur of developing suitable specific requirements and 

selecting the variant that has the best fit to the functional and assurance requirements. 
While the functional requirements assessment at the technical level should be quite clear 
the non-functional assessment does mandate some notes. 

To develop a system that anticipates future certification it is essential to ensure that suitable 

evidence of functionality, stability and reliability is available with adequate confidence - CC 
nicely splits this in SFR and SAR - adopting this split we here focus on the SAR that can be 
achieved for a FLOSS component. 

A.1.4  QA ς Quality Assurance 

 Repository traceable? 

 Bug tracking? 

 Mainline distribution usage? 

 Mainline kernel integration? 

 If not in mainline - how invasive is the patch? 

 Test-suits available? 

http://www.lids.org/
http://tomoyo.sourceforge.jp/
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A.1.5 Technical documentation available 

Allowing to expect modification/extensions to be doable with reasonable probability of not 
introducing systematic faults in the security related logic of the LSM. 

A.1.6 Maintainability 

 Roadmap available? 

 Maintainer known/number of core developers? 

 Community active? 

 Support by vendor/commercial entity given? 

Notably the maintainability criteria might seem a bit strange but it is not uncommon in 
FLOSS developments to have technical superior solutions that are not well supported or lack 
community endorsement and thus are not long-term stable. As the ways to ride dead horses 
is well documented it is not necessary to add any further variants of this discipline in the 
context of OVERSEE. 

With this data at hand one then can do the final step of extending the open-source 
component to fit the technical needs of the OVERSEE platform and integrate it into the 
runtime environment. If the selection criteria have been well established and the necessary 
evidence based considered during selection then this can significantly aid certification (both 
security and safety). 
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B.  Conformance Testing: how implementation meets specifications? 

Safety References related to the usage of pre-existing software - specifically NOT developed 
for safety related usage. 

B.1. Functional Safety related Standards 

 IEC 61508-3 (edition 1998) 

o 7.4.2.7 - demonstration of independence of software with mixed SIL levels 

o 7.4.2.11 - requirements on pre-existing SW 

 IEC 61508-3 (Edition 2011) 

o 7.4.2.7/7.4.2.8 

o 7.4.2.11/12 - requirements on pre-existing SW 

 IEC 61508-7 (edition 1998) 

o B5.2 Black Box testing (XM test suite) 

o B5.4 Field Experience     

o C5.1 Probabilistic Testing 

IEC 61508 is a guiding, generic functional safety standard. Components certified to IEC 61508 

can be re-used in the context of derived standards i.e. IEC 26262 (naturally with limitations 
pertaining to the specific context). Thus taking, the generally far more strict, regime of IEC 
61508 as a guidance for the argument development for COTS/FLOSS components allows a 
reasonable probability of later certification efforts to be successful with tolerable effort. 
Though OVERSEE is a prototype implementation of a technical solution and not a to-be-
certified product. 

 IEC 26262-6: 

o 8.4.5 swell as table 10 and 11 

o 7.4.6 categorization of COTS for safety (EN 50128 3.18 open-source = COTS) 

o 7.4.8 -> COTS certification 26262-8 Clause 12 

 IEC 26262-8:  

o 14 Proven in use argument explicitly noting: 

Á Candidate being used in other safety-related industries; or 

Á Candidate being a widely spread COTS product not necessarily 
intended for automotive applications. 

o All of clause 14 can and shall be applied. 

  IEC 26262-9 

o  5.4.6 ASIL decomposition 
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Note that it is not an intent of OVERSEE to provide certification rather it is the intent of the 

OVERSEE development to, with reasonable probability; prevent show stoppers from being 
introduced that make a certification impossible. The clauses mentioned here are not being 
followed in any formal way rather they have been reviewed to assess the feasibility of 
certification of key OVERSEE components in the context of a safety assessment building on 
pre-existing (COTS) arguments. Note further that EN 50128 (prEN 50128 2009) explicitly 
identifies open-source as being equivalent to COTS in the context of safety related systems 
(Clause 3.18) though EN 50128 is a rail standard, it is, being a transport standard, suitable for 
cross-referencing when arguing suitability (might add that the safety requirements in Rail 
are fundamentally more restrictive than the watered-down safety requirements for 
automotive industry...)        

B.2. DO 178B Software Considerations in Airborne Systems 

Å Section 2 

Å Subsection 2.4 (COTS issues) 

Å Section 3 

Å Subsection 3.2 (specifically component-Z example) 

Å Section 12 

Å All of clause 12 is of relevance 

Obviously DO 178B is not applicable to OVERSEE directly though due to this standard being 
well accepted and concise (notably compared to the mess that IEC 26262 provides) it is a 

good starting point for introducing safety considerations in a project heavily building on 
COTS/FLOSS components. Further due to XtratuM being targeting the "DO 178 market" and 
the design being built on ARINC 653 (a prime Avionics standard for partitioning systems) it 
seems natural to consider DO 178B as far as reasonably possible. 

B.2.1  ARINC 653 

Without further details - XtratuM the separation kernel in use in OVERSEE was designed and 
implemented along the guidelines of ARINC 653. Being suitable for the avionics domain up to 
Level A certified systems/components it seems more than suitable for the automotive 
domain (a subjective claim would be that ASIL D is at best DO 178 B/C - see clause 

2.2.1/2.2.2). 
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B.3. IEC 15408 Common Criteria 

A common criteria certification is against a specific protection profiles (PP) and in this sense 
one cannot globally state that Linux has been certified to any EAL level. But taking the 
current certification reports, which show that Linux has been certified to EAL4+ against the 
following number of PPs - specifically: 

 General Purpose Operating System Protection Profile (GP-OSPP) 

 Controlled Access Protection Profile (CAPP) 

 Labeled Security Protection Profile (LSPP) 

 Role-Based Access Control Protection Profile (RBACPP) 

 it is legitimate to claim that GNU/Linux can be certified to EAL4+.  

Due to the role of security in OVERSEE we briefly outline The overall technologies for 
certification of GNU/Linux against specific PPs that are in use (and available to the 
GNU/Linux based partitions of OVERSEE): 

 

  System wide governing Security Policy providing: 

Domain/Type enforcements, MILS. This is provided by various LSMs currently available 
(SELinux, SMAK, TOMOYO, etc). As OVERSEE is based on a separation kernel as the primary 
isolation enforcement (spatial and temporal) this constitutes the second level of security 
mechanisms. To effectively make use of the core mechanisms for security policy 
enforcement at the partition level notably the secure I/O partition which is based on 

GNU/Linux, extensions to the existing LSM (Linux Security Modules) is needed to account for 
the kernel level extensions provided by the paravirtualization and the inter-partition 
communication mechanisms. Rather than extending these to generic interfaces (i.e. sokets) 
the extension of the LSM to intercept sensitive processing steps is being implemented (i.e. at 
the queue management level of the virtual device layer in Xtratum) 

 

   Access Control covering the primary user accessible resource in UNIX - files: 

The layering of control policy enforcement in GNU/Linux is roughly traceable to the historic 
development: 

 Credentials 

 Capabilities 

 Namespaces 

 Attributes 

      Namespaces are provided for multiple facilities at kernel level, and can also be enforced 
by VFS extensions (i.e. FUSE), attributes are a well known mechanism, notably extended 
attributes provided in GNU/Linux as xattr and acsl in the context of Mandatory Access 
Control scemes (i.e. SELinux). The capabilities cover the full spectrum of DAC, MAC and RDAC 
(Role Based Access Control). 
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   Memory Protection: 

Memory protection comes in two levels in OVERSEE, at the core level XtratuM provides a 
fundamental separation of memory areas at the partition level thus ensuring that security 
properties at a pro-partition level actually can be established. A second "line of defense" is 
then the usual OS level memory protection mechanisms - with potentially varying 
capabilities and maturity. 

GNU/Linux has a plethora of technologies fielded which address threats related to memory 
protection issues, a few of which are PaX, ASLR (in mainline) ProPolice and Stack-smash-
protection as well as chroot jail hardening methods. 

These methods allow to reinforce the GNU/Linux partitions of OVERSEE, notably the secure 

I/O partition as this is obviously a major potential threat area.  

 

  Identification and Authentication: 

 Identification and Authentication is again covered by a broad range of facilities tightly 
integrated in all mainline GNU/Linux distributions, notably PAM (pluggable authentication 
modules) which is managed at kernel.org, appropriate account management as well as 
authenticated user access. 

In OVESEE the first level of identification is provided by XtratuM, as ARINC 653 mandates, 
xtratum provides a static port attributes provided by the XtratuM core. These port attributes 
include a unique partition identifier and a unique port name thus providing the first level of 

identification in interpartition communication. Authentication is then at the partition level 
(provided by services within the partition), building on secured data provided by the security 
service partition. 

 

  Cryptographic services: 

Any sound security system needs to provide core services based on a certified random 
number generator. These core services are provided by the security service module and, 
where necessary, based on the hardware security module. 

services: Cipher-based MAC (CMAC), Hash-based Message Authentication Code (HMAC), 
Signature Verification/Generation, Cipher 

 


